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Biomedical image analysis is fundamental for biomedical discovery. Holistic
image analysis comprises interdependent subtasks such as segmentation,
detection and recognition, which are tackled separately by traditional
approaches. Here, we propose BiomedParse, abiomedical foundation
model that canjointly conduct segmentation, detection and recognition
across nine imaging modalities. This joint learning improves the accuracy
forindividual tasks and enables new applications such as segmenting

all relevant objects in animage through a textual description. To train
BiomedParse, we created a large dataset comprising over 6 million triples
ofimage, segmentation mask and textual description by leveraging natural
language labels or descriptions accompanying existing datasets. We showed
that BiomedParse outperformed existing methods onimage segmentation
across nine imaging modalities, with larger improvement on objects with
irregular shapes. We further showed that BiomedParse can simultaneously
segment and label all objects in animage. In summary, BiomedParse is an
all-in-one tool for biomedical image analysis on all major image modalities,
paving the path for efficient and accurate image-based biomedical discovery.

Biomedical image analysis is critical to biomedical discovery because
imaging is one of the most important tools for studying physiology,
anatomy and function at multiple scales from the organelle level to
the organlevel' . Holistic image analysis comprises multiple subtasks,
such as segmentation, detection and recognition of biomedical objects.
Segmentation aims to divide an image into segments representing
different objects, often requiring the aid of a user-provided bound-
ing box for each object of interest>®. Detection aims to identify the
location of an object of interest in the image’, whereas recognition
aims to identify all objects within an image®. Standard image analysis

methods typically approach these tasks separately, using specialized
tools for individual tasks’. Despite their encouraging performance,
suchadisjointed approach misses opportunities for joint learning and
reasoning across these interdependent tasks.

For example, a lot of previous image analysis works focus on seg-
mentationalone, thusignoring key semanticinformation frominterde-
pendent tasks, such as metadata and object type names. This results in
suboptimal segmentation while imposing substantial burden on users,
as many state-of-the-art segmentation tools require users to provide a
tight bounding box indicating the location of an object of interest'*".
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Fig.1| Overview of BiomedParse and BiomedParseData. a, The GPT-4

constructed ontology showing a hierarchy of object types that are used to unify

semantic concepts across datasets. Bar plots showing the number of images
containing that object type. b, Bar plot showing the number of image-mask-
description triples for each modality in BiomedParseData. CT, computed
tomography; MRI, magnetic resonance imaging; OCT, optical coherence
tomography. ¢, Flowchart of BiomedParse. BiomedParse takes animage and a
text prompt asinput and then outputs the segmentation masks for the objects

specified in the prompt. Image-specific manual interaction such as bounding box
or clicks is not required in our framework. To facilitate semantic learning for the

UMAP 1

UMAP 1

image encoder, BiomedParse also incorporates a learning objective to classify
the meta-object type. For online inference, GPT-4 is used to resolve text prompt
into object types using the object ontology, which also uses the meta-object
type output from BiomedParse to narrow down candidate semantic labels.

d, Uniform Manifold Approximation and Projection (UMAP) plots contrasting
the text embeddings for different cell types derived from BiomedParse text
encoder (left) and PubMedBERT (right). e, UMAP plots contrasting the image
embeddings for different cell types derived from BiomedParse image encoder
(left) and Focal (right).

Nature Methods | Volume 22 | January 2025 | 166-176

167


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02499-w

Theboundingbox requirementleads to threelimitations. First, users have
to manually draw bounding boxes in the image, which requires domain
expertise toidentify the locations and shapes of the target objects. Sec-
ond, boundingboxes, which are often rectangular, fall short of accurately
representing objectswithirregular or complex shapes. Third, bounding
box-based approaches are not scalable for images containing a large
number of objects, such as segmenting cells in a whole-slide pathology
image, as users need to provide abounding box for each object.

In this paper, we propose to approach biomedical image analysis
asimage parsing, aunifying framework for jointlearning and reasoning
across segmentation, detection and recognition'> . Specifically, we
have developed BiomedParse, abiomedical foundation model forimage
analysis thatis capable of carrying out all three tasks by leveraging their
interdependencies, thus addressing key limitations in traditional meth-
ods. In particular, joint learning of object detection and recognition
eliminates the need for user-specified bounding boxes, as segmenta-
tion can be carried out using semantic labels from text prompts alone.

The major bottleneck for pretraining BiomedParse is data. While
biomedical segmentation datasets abound”®, there are relatively few
previous works on object detection and recognition in biomedicine,
let alone datasets covering all three tasks. To address this problem, we
propose a new approach for pretraining BiomedParse using no more
than standard segmentation datasets. The key insight is to leverage
readily available natural language labels or descriptions accompanying
those datasets and use GPT-4 to harmonize these noisy, unstructured
texts with established biomedical object ontologies. This enables us to
construct BiomedParseData, abiomedical image analysis dataset com-
prising 3.4 million triples of image, segmentation mask and semantic
labels of the biomedical object and 6.8 millionimage-mask-description
triples, fromover 1 millionimages. The semantic labels encompass 82
major biomedical object types across 9 imaging modalities.

Unlike segmentation methods that focus on identifying salient
segment boundary within a bounding box, BiomedParse learns to
model typical shape of each object class, thus mimicking how humans
perceive objects in an image. BiomedParse can segment images
using text prompts alone (for example ‘inflammatory cells in breast
pathology’), without requiring any user-specified localization such
asboundingboxes. Consequently, BiomedParse can better recognize
and segment objects of irregular and complex shapes, which are very
challenging for traditional methods using rectangular bounding boxes.
Moreover, BiomedParse canrecognize all objectsin animage, without
requiring any user text prompt.

We conductalarge-scale study to evaluate BiomedParse on102,855
held-outimage-mask-label triples across nine modalities for segmen-
tation, detection and recognition. On segmentation, BiomedParse
established new state-of-the-art results, outperforming previous best
methods such as MedSAM" and SAM'°. Moreover, using text prompts
alone, BiomedParse is much more scalable than these previous meth-
ods, which require orders of magnitude more user operationsin speci-
fying object-specific bounding boxes to perform competitively. We
also demonstrated that BiomedParse can accurately detect invalid
text prompts describing nonexistent objects in the image. Biomed-
Parse achieves even larger improvement in image analysis accuracy
forirregular-shaped objects, attaining a 0.857 Dice score thatis 39.6%
higher than the best-competing method. Onrecognition, we show how
BiomedParse canaccurately segment and label all objects without any
user-specified text prompt. Collectively, we introduce a biomedical
foundation model for biomedical image analysis, achieving superior
performance on segmentation, detection and recognition, paving the
way for large-scale image-based biomedical discovery.

Results

Overview of BiomedParse and BiomedParseData

To develop amodel that can jointly conduct segmentation, detection
and recognition, we need a supervision dataset that covers all three

tasks. To the best of our knowledge, no such datasets exist. To thisend,
we created the dataset BiomedParseData by combining 45 biomedical
image segmentation datasets and using GPT-4 to generate the canon-
ical semantic label for each segmented object.

The key insight is that existing segmentation datasets often con-
tain valuable semantic information about the segmented objects;
however, such information typically resides in noisy and inconsistent
natural language text descriptions that do not conform to standard
biomedical ontologies. To address this challenge, we use GPT-4 to
create a unifying biomedical object ontology for image analysis and
harmonize natural language descriptions with this ontology (Methods).
This ontology encompasses three main categories (histology, organand
abnormality), 15 meta-object types and 82 specific object types (Fig.1a).
The resulting BiomedParseData contains 3.4 million distinct image—
mask-label triples, spanning nine imaging modalities and 25 anatomic
sites (Fig. 1b and Extended Data Fig. 1), representing a large-scale and
diverse dataset for semantic-based biomedical image analysis.

To make BiomedParse better equipped in handling diverse text
prompts not covered by the canonical semantic labels, we also use
GPT-4 to synthesize synonymous text descriptions for each semantic
label and sample from them during training (Methods and Supple-
mentary Figs.1and 2). Thisyielded a total of 6.8 millionimage-mask-
description triples.

While our method does not use bounding boxes, previous
state-of-the-art methods such as MedSAM and SAM generally require
prespecified bounding boxes. We consider two scenarios to provide
the bounding boxes: oracle bounding box (the minimum rectangular
bounding box covering a segmented object) and bounding box cre-
ated by Grounding DINOY, a state-of-the-art object detection method
that can generate bounding boxes from text prompt of an object label.
Grounding DINO does not perform segmentation.

BiomedParse adopts a modular design under the SEEM
architecture®, comprising an image encoder (for encoding the input
image), atextencoder (for encoding the text prompt), amask decoder
(for outputting the segmentation mask) and a meta-object classifier
(forjointtraining of image encoder with object semantics) (Fig.1c). The
image and text encoders were initialized using state-of-the-art Focal®
and PubMedBERT?, respectively.

Before evaluatingimage analysis results, we first examine the qual-
ity of embeddings derived from BiomedParse. Specifically, we compare
the text embeddings from BiomedParse to those from PubMedBERT.
We found that embeddings from BiomedParse can better distinguish
fine-grained cell types, with a Silhouette score of 0.89, which is much
higher than using the embeddings from PubMedBERT (Fig. 1d and
Extended Data Fig. 2). We also compare the image embeddings from
BiomedParse with those from Focal. We observed that embeddings from
BiomedParse are more predictive of tumor malignancy ona pathology
dataset” (Fig. 1e). The superior performance of the text and image
embeddings from BiomedParse necessitates the training of Biomed-
Parse using BiomedParseData, raising our confidence that BiomedParse
can be an effective approach for biomedical image analysis.

Accurate and scalable segmentation across nine modalities

We first evaluated BiomedParse on biomedical image segmentation
using the held-out set comprising 102,855 test instances (image-mask-
label triples) across nine imaging modalities (Fig. 2a and Extended
Data Figs. 2 and 3). We observed that BiomedParse achieved the best
Dice score, even against the best-competing method MedSAM with
the oracle bounding box as input (paired t-test Pvalue <10™*). In the
morerealistic setting when MedSAM or SAM s supplied with bounding
boxes generated by Grounding DINO, the superiority of BiomedParse
iseven more prominentin end-to-end biomedical object detection and
segmentation, especially in more challenging modalities such as patho-
logy and computed tomography (CT) whereirregular-shaped objects
abound. By training on domain-specific datasets, both BiomedParse and
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MedSAM outperformgeneral-domain methods such as SAM. We further
observed that BiomedParse outperformed other text prompt-based
approaches (Supplementary Fig. 3 and Extended Data Fig. 4), includ-
ing SEEM?°, SegVol** and SAT%, task-specific segmentation method
CellViT* (Supplementary Fig. 4) on cell segmentation, widely used
supervised method Swin UNETR” (Supplementary Fig. 5), nnU-Net*®
and DeepLabV3+”° (Supplementary Fig. 6) and universal biomedical
segmentation model UniverSeg*® (Supplementary Fig. 7). BiomedParse
also outperformed SAM continually trained on BiomedParseDataand
MedSAM continually trained on BiomedParseData (Extended Data
Fig.5), even though both SAM and MedSAM utilized oracle bounding
boxes for training and inference.

We showed examples comparing BiomedParse segmentation and
the ground truth across multiple imaging modalities, demonstrating
the generalizability of BiomedParse (Fig. 2b). We further compared
BiomedParse on abenchmark created by MedSAM" encompassing 50
tasks and again observed the best performance by BiomedParse, even
against MedSAM with oracle bounding box (paired t-test Pvalue <1072),
further demonstrating the superiority of BiomedParse (Extended Data
Fig. 6).Inaddition to being more accurate, BiomedParse is more scal-
able compared to bounding box-based approaches, which stems from
the generalizability of text prompts acrossimages of the same modality
oranatomicalsite, thus eliminating the need for laborious user opera-
tionsin providing atight bounding box for each object. Todemonstrate
this, we compared BiomedParse and previous state-of-the-art methods
MedSAM and SAM on a cell segmentation dataset with 42 colon pathol-
ogyimages (Fig.2c). Using asingle text prompt ‘glandular structurein
colon pathology image’, BiomedParse achieves a 0.942 median Dice
score, whereas neither SAM nor MedSAM achieves amedian Dice score
higher than 0.75 without tight bounding boxes as input. In fact, to
achieve competitive results comparable to BiomedParse with asingle
text prompt, MedSAM requires the users to supply a tight bounding box
foreachofthe 430 cellsintheseimages (Fig. 2c).Ingeneral, our results
reveal that thebounding box-based approachis muchlessaccurate on
irregular-shaped objects, such as tumors and abnormal cells (Fig. 2d e).
In contrast, BiomedParse still attained highly accurate segmentation
for such objects. The scalability and accuracy of BiomedParse bode
well for its utility in real-world applications.

BiomedParse can also detect invalid text prompts (for example,
the request to identify a brain tissue in a chest X-ray image), by cal-
culating a P value using Kolmogorov-Smirnov (K-S) test (Methods).
From preliminary experiments, we found that invalid text prompts
have an average K-S test Pvalue smaller than 10 while the valid ones

have an average K-S test P value above 0.1 (Fig. 2f). Using 0.01 as the
P value cutoff, BiomedParse can achieve an estimated performance
of 0.93 precision and 1.00 recall on detecting invalid input (Fig. 2g).
BiomedParse substantially outperformed Grounding DINO on inva-
lid input detection (Fig. 2h,i). This enables BiomedParse to perform
recognition by enumerating candidate object types in the ontology,
skippinginvalid text prompts and generating segmentation masks for
valid object labels.

Accurate segmentation of irregular-shaped objects

In the previous section, we show that BiomedParse outperformed
bounding-box-based methodsingeneral. Additionally, as BiomedParse
learns semantic representation for individual object types, we hypoth-
esize that its superiority over previous methods will be even more
pronounced in segmenting irregular-shaped objects. To verify this,
we show the aggregate attention map of each object type learned by
BiomedParse ontestimages unseen during training and observed that
they faithfully reflect object shapes, including many irregular-shaped
objects (Fig. 3a). Next, we define three metrics to assess the regular-
ity of an object, including convex ratio (the ratio of the object size to
the tightest convex size), box ratio (the ratio of the object size to the
tightest rectangle size) and rotational inertia (the difficulty in changing
the rotational velocity) (Methods). We found that the improvements
of BiomedParse over SAM and MedSAM are strongly correlated with
these metrics (average correlation 0.870), indicating that our method
has alarger improvement onirregular-shaped objects (Fig. 3b-d and
Extended DataFig. 7). We also found that BiomedParse achieves larger
improvement on objects with smaller size (Supplementary Fig. 8).
Figure 3eillustrates afew examples comparing BiomedParse and Med-
SAM on detecting irregular-shaped objects. Furthermore, we show
that BiomedParseData has higher average object irregularity than
the datasets used by MedSAM (Fig. 3f,g and Supplementary Fig. 9),
and the improvement of BiomedParse is also larger on BiomedParse-
Data (Fig. 3h), highlighting the benefit from joint learning of object
semantics in detecting the more challenging irregular-shaped objects.

Object recognition using the segmentation ontology

In our final analysis, we explore BiomedParse’s capacity for object
recognition, which aims to simultaneously segment and label every
object within animage. Provided with animage, along with its modal-
ity and anatomical site, BiomedParse iteratively performs detection
and segmentation for all candidate object types within the ontology
of that modality and anatomical site, and the segmented masks are

Fig.2|Comparison onlarge-scale biomedical image segmentation datasets.
a, Box plot comparing the Dice score between our method and competing
methods on102,855 test instances (image-mask-label triples) across nine
modalities. MedSAM and SAM require bounding box as input. We consider

two settings: oracle bounding box (minimum bounding box covering the gold
mask); bounding boxes generated from the text prompt by Grounding DINO, a
state-of-the-art text-based grounding model. Each modality category contains
multiple object types. Each object type was aggregated as the instance median
tobe showninthe plot. ninthe plot denotes the number of test instances in the
corresponding modality. Significance levels at which BiomedParse outperforms
the best-competing method, with two-sided paired t-testare *P<1x107%
***p<1x107% and ***P <1x10"* Exact Pvalues for the comparison between
BiomedParse and MedSAM with oracle box prompt are: P<1.86 x 102 for All;
P<2.49x107for CT; P<3.33 x10™*for MRI; and P < 3.30 x 10 for Pathology.

b, Nine examples comparing the segmentation results by BiomedParse and the
ground truth, using just the text prompt at the top. ¢, Box plot comparing the
Dice score between our method and competing methods on a cell segmentation
test set with n =42 images. BiomedParse requires only asingle user operation
(the text prompt ‘Glandular structure in colon pathology’). By contrast, to

get competitive results, MedSAM and SAM require 430 operations (one
bounding box per anindividual cell). Significance levels at which BiomedParse

outperforms MedSAM, with one-sided paired t-test are **P<1x 107 **P <1 x

1073; and ***P <1x10™*. Exact Pvalues are: P < 1.74 x 10 3 for one per dataset and
P<1.71x107 for one perimage. d, Five examples contrasting the segmentation
results by BiomedParse and MedSAM, along with text prompts used by
BiomedParse and bounding boxes used by MedSAM. e, Comparison between
BiomedParse and MedSAM on abenign tumor image (top) and a malignant tumor
image (bottom). Theimprovement of BiomedParse over MedSAM is even more
pronounced on abnormal cells with irregular shapes. f, Box plot comparing the
two-sided K-S test Pvalues between valid text prompt and invalid text prompt.
BiomedParse learns to reject invalid text prompts describing object types not
presentin the image (small Pvalue). We evaluated a total of 4,887 invalid prompts
and 22,355 valid prompts. g, Plot showing the precision and recall of our method
ondetectinginvalid text prompts across different K-S test Pvalue cutoff.

h,i, Scatter-plots comparing the area under the receiver operating characteristic
curve (AUROC) (h) and F1(i) between BiomedParse and Grounding DINO on
detectinginvalid descriptions. Inall box plots, each box shows the quartiles of
the distribution, with center as the median, minimum as the first quartile, and
maximum as the third quartile. The whiskers extend to the farthest data point
that lies within 2 x interquartile range (IQR) from the nearest quartile. Data points
thatlie outside the whiskers are shown as fliers.
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aggregated to ensure spatial cohesion among adjacent pixels (Meth-
ods). This enables BiomedParse to accurately conduct object recogni-

Grounding DINO" is a state-of-the-art general-domain object
recognition system but it does not perform segmentation, which

tion, as evidenced in Fig. 4a, where objects are accurately identified makes Grounding DINO and BiomedParse not directly comparable.
We circumvent this by casting the object recognition task as a binary

and segmented with an average Dice score of 0.94.

a C
O] BiomedParse  [[] MedSAM (oracle box)  [[] MedSAM (grounding DINO) [ BiomedParse [ SAM
O] SAM (oracle box) O] SAM (grounding DINO) ] MedSAM
*kkk
*"’:"‘* *% *kk I
i —
o] - 7 s
. Té —é [? — 1.0 4
N ‘ ==
0.8} ; %
0.9 4
© 06 - o
g 06 = - $ 08
3 3
]
8 o4t S 07 |
a , a
0.2 0.6
or V éé = ii 0.5
& $ S O P S & & o) & & &
v : v v Q b P G 4 }
//\QW //&O //Q’O ’/'& *\Q ”\ & e\Q A\(\ ,\\(\ gb(b Q}\ eQe
o <& & < S N 5 & K O & e o
> ) & > & S o > o @ N
IS KN « & S X & (e} OQ (@)
+ 3 e < & N
<Q & <& <
N
b COVID-19 infection Lower-grade glioma COVID-19 infection ~Glandular structure Benign tumor in Optic disc in Non-neoplastic polyp Melanoma in Cystoid macular
in chest CT in brain MRI in chest X-ray in colon pathology  breast ultrasound retinal fundus in colon endoscope  skin dermoscopy edema in OCT
Dice: 0.93 Dice: 0.97 Dice: 0.93 Dice: 0.97 Dice: 0.97 Dice: 0.97 Dice: 0.92 Dice: 0.98 Dice: 0.91

"

BiomedParse

Ground truth

o

d Neoplastic cells Inflammatory cells Connective tissue Tumor core in Enhancing tumor €  BiomedParse MedSAM MedSAM
in liver pathology in liver pathology  cells in liver pathology brain MRI in brain MRI ‘Glandular structure’ 1 box for all cells 22 boxes for ind. cells
Dice: 0.93 Dice: 0.89 Dice: 0.97 Dice: 0.95 Dice: 0.96 Dice: 0.74 Dice: 0.95

BiomedParse

MedSAM

Dice: 0.88

Dice: 0.72

‘Glandular structure’

5 boxes for ind. cells
Dice: 0.95

1 box for all cells

Dice: 0.96 Dice: 0.53

o
f g h F1score 1 AUROC
o — Precision — Recall
1071 : 10 e® 9 10 [e se o .
. ° R4
1072 4 L . e, - - -
H . © 08Te P o 08 P
S 10 4 ! 4 L, ] L
a . © £ o6 So6f
g0 S e 8
8] ’ .
o 10" %] 5045 % 5 04T -
v o . =) e
107 | 02 . 02+
-12 ,’/ ,’/
10 : : 04 i e et et o : : : : : o : : : : ‘
106 105 104 10° 102 107 0O 02 04 06 08 10 0O 02 04 06 08 10

Invalid input

Valid input

Grounding DINO Grounding DINO

P value threshold

Nature Methods | Volume 22 | January 2025 | 166-176 170


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02499-w

classification problem: given an input image and a candidate object
type, the model determines whether the image contains at least one
object of the given type. Inthis classification formulation, we observed
that BiomedParse substantially outperformed Grounding DINO with
a25.0%,87.9%,74.5% improvement on precision, recall and F1, respec-
tively (Fig.4b-d). Theimprovement over Grounding DINOis even larger
when more objects are present in the image (Fig. 4e).

Next, we evaluated the performance of BiomedParse on end-to-end
object recognition using weighted average Dice score. Compared to
MedSAM and SAM using Grounding DINO for recognition and bound-
ingbox generation, BiomedParse outperformed them by alarge margin
(Fig. 4f and Supplementary Fig. 10). Similar to our observation on
objectidentification, theimprovement over comparison approachesis
evenlarger when more objects are presentintheimage (Fig.4g). These
resultsindicate BiomedParse’s ability to identify all objectsinanimage,
offering an effective tool for holisticimage analysis.

Finally, we evaluated BiomedParse on real-world data from the
Providence Health System (Fig. 5). We performed object recognition
by asking BiomedParse toidentify and segmentall relevant cellsin the
pathology slides. We found that the annotations by BiomedParse cor-
rectlyidentified regions ofimmune cells and cancer cells, attaining high
consistency withthe pathologist annotations. While pathologists tend
tofocusonaspecific region of the cell type and provide coarse-grained
annotations, BiomedParse can precisely label all relevant cells as speci-
fied in the ontology, indicating the potential for BiomedParse to help
alleviate clinician burdens in real-world clinical applications.

Discussion

We have presented BiomedParse, a biomedical foundation model
for image analysis based on image parsing, and a large-scale image
parsing dataset BiomedParseData, containing 3.4 million image-
mask-label triples and 6.8 millionimage-mask-description triples.
In contrast to existing biomedical foundational models that require
users to provide a tight bounding box for each object to segment,
BiomedParse is bounding-box-free and can perform holistic image
analysis with segmentation, detection and recognition all at once.
We conducted alarge-scale evaluation on 102,855 test image-mask-
label triples across nine modalities. BiomedParse attained new
state-of-the-art results, substantially outperforming previous best
methods such as MedSAM and SAM, even when they were equipped
with an oracle bounding box as the input. The improvement is even
larger when the objects have irregular shapes or when animage con-
tains a large number of objects. We also validated the accuracy and
scalability of BiomedParse on previously unseen real-world data from
the Providence Health System. While BiomedParse has a compara-
ble performance to the state-of-the-art specialized model nnU-Net
on most imaging modalities (Supplementary Fig. 6), BiomedParse
achieves such promising performance by only using one universal
model as opposed to 106 individually trained nnU-Nets models.
Collectively, BiomedParse offers an accurate, scalable and robust
biomedicalimage analysis tool that can be broadly applied to various

modalities and applications, paving the way for image-based bio-
medical discovery.

The image analysis field has witnessed rapid development in the
past decade. Since its inception in 2015, the U-Net architecture has
revolutionized the field of automatic pixel-wise prediction through
supervised training®-*2. This groundbreaking work laid the founda-
tionfor adiverse array of network structures, ranging from advanced
convolution-network designs to vision-transformer models??%*,
Recent advancesinimage detection and recognition, such as develop-
mentsinobject detection frameworks like Faster R-CNN**and YOLOv4
(ref.49), have enhanced capabilities in identifying and localizing ana-
tomical features with high precision. Theintroduction of SAM marked
amilestone by demonstrating the model’s ability to generalize segmen-
tation to previously unseen classes, utilizing visual prompts such as
points and bounding boxes as guides™®.

Despite the proliferation of advances in the general domain,
research on adapting them for large-scale biomedical image analysis
acrossawiderange of organ or tissue classes remains relatively sparse®.
MedSAMis anotable exception by adapting SAM to the medical realm
through continued training on alarge number of biomedical segmenta-
tion datasets, establishing the state of art in biomedical image analysis;
however, like SAM, MedSAM focuses on segmentation alone, thus
ignoring valuable semantic information from related tasks of detec-
tion and recognition. Consequently, both SAM and MedSAM require
users to provide labor-intensive input such as the tight bounding box
for each object to segment, which is hard to scale and very challen-
ging for objects with irregular shapes. As a result, recent works have
exploited other types of user operations to replace bounding box* or
segmentation without bounding boxes*>** as alternatives to bounding
box-based approaches.

We propose BiomedParse to overcome these challenges due to
theboundingboxes. By joint learning across segmentation, detection
and recognition in the unifying framework of image parsing, and by
using GPT-4 to harmonize noisy object descriptions, BiomedParse was
able to acquire new capabilities such as identifying and segmenting
objects of interest using a text prompt alone, as well as recognizing
all objectsinanimage by leveraging the segmentation ontology. This
represents an important step toward scaling holistic image analysis
in biomedicine and real-world clinical applications. If the user has a
specific target object type in mind, BiomedParse can perform object
detection and segmentation based on the text prompt alone, which
specifies the desired object type (Fig. 2b). Alternatively, BiomedParse
canbeusedtoidentify all available object types without requiring any
user text prompt. Behind the scenes, BiomedParse enumerates all
possible object types to perform object detection and segmentation
simultaneously.

A particularly exciting area for biomedical image analysis is the
applicationincellularimages such as hematoxylinand eosin staining and
multiplexed immunofluorescence (MxIF) imaging. This could help eluci-
datethesize, shape, texture and spatial relationships of individual cells,
with potential ramificationsin emerging applications such as modeling

Fig.3|Evaluation on detectingirregular-shaped objects. a, Attention maps of
text prompts for irregular-shaped objects, suggesting that BiomedParse learns
rather faithful representation of their typical shapes. US, ultrasound.

b-d, Scatter-plots comparing the improvement in Dice score for BiomedParse
over MedSAM with shape regularity in terms of convex ratio (b), box ratio

(c) andinversed rotational inertia (d). A smaller number in the x axis means
higher irregularity on average. Each dot represents an object type. We show

the regression plot with the 95% confidence interval as the error bands. The
Pvalues show the two-sided Wald test results. e, Six examples contrasting
BiomedParse and MedSAM on detecting irregular-shaped objects. Plots are
ordered from the least irregular one (left) to the most irregular one (right).

f.g Comparison between BiomedParseData and the benchmark dataset used by
MedSAM in terms of convex ratio (f) and box ratio (g). BiomedParseDatais a more

faithful representation of real-world challenges in terms of irregular-shaped
objects. h, Box plots comparing BiomedParse and competing approaches on
BiomedParseData and the benchmark dataset used by MedSAM. BiomedParse
has alargerimprovement on BiomedParseData, which contains more diverse
images and more irregular-shaped objects. The number of object types are

as follows: n=50 for MedSAM benchmark and n =112 for BiomedParseData.
Significance levels at which BiomedParse outperforms the competing

method, with atwo-sided paired t-test are **P<1x102and ***P <1 x10™*. Exact
Pvalues were P< 2.98 x 107 for MedSAM benchmark and P < 1.86 x 10 for
BiomedParseData. Each box shows the quartiles of the distribution, with center
as the median, minimum as the first quartile, and maximum as the third quartile.
The whiskers extend to the farthest data point that lies within 2 x IQR from the
nearest quartile. Data points that lie outside the whiskers are shown as fliers.
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Fig. 4 |Evaluation on object recognition. a, Six examples showing the results of
object recognition by our method. Object recognition identifies and segments
all objects in animage without requiring any user-provided input prompt.

b-d, Scatter-plots comparing the F1(b), Precision (c) and Recall (d) scores
between BiomedParse and Grounding DINO on identifying objects presented
inthe image. e, Comparison between BiomedParse and Grounding DINO on
objectidentification in terms of median F1score across different numbers of
objectsin the image. We show the line plot with the 95% confidence interval

as the error bands. f, Box plot comparing BiomedParse and MedSAM/SAM
(using bounding boxes generated by Grounding DINO) on end-to-end object
recognition (including segmentation) in relation to various modalities. Each
box shows the quartiles of the distribution, with center as the median, minimum
as the first quartile, and maximum as the third quartile. The whiskers extend to
the farthest data point that lies within 2 x IQR from the nearest quartile. Data

Number of object types in the image

points that lie outside the whiskers are shown as fliers. Each modality category
contains image instances with different sets of objects. Each object set was
aggregated as the instance median to be shown in the plot. The number of object
sets in each modality were as follows: n = 66 for CT, n =25 for MRI, n =4 for
X-ray, n=20 for Pathology, n=2 for US and n = 1for Fundus. Significance levels
at which BiomedParse outperforms the competing method, with a two-sided
paired t-testare *P<1x107%**P<1x107% and ***P <1x10™*. Exact Pvalues for
the comparison between BiomedParse and MedSAM were P<1.96 x 10™ for
CT,P<4.16x102for MRI, P< 3.43 x 107°for X-ray, P < 9.42 x 1072 for Pathology
P<2.19 x1072for US. g, Comparison between BiomedParse and MedSAM/SAM
(using bounding boxes generated by Grounding DINO) on end-to-end object
recognition (including segmentation) in relation to numbers of distinct objects
inthe image. We show the line plot with the 95% confidence interval as the

error bands.
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Fig. 5| Evaluation of BiomedParse onreal-world cell segmentation examples.
a-f, De-identified pathology images from the Providence Health System are used
to compare pathologist annotations (a,c,e) and annotations from BiomedParse
(b,d,f). We show the exact pathologist outputs, including object names (for

BiomedParse annotation
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example, lymphocyte and stroma) and object locations, as well as the exact

outputs by BiomedParse. BiomedParse does not need any user-provided text
prompt and canidentify and segment cells of any types included in the ontology.

tumor microenvironments for precisionimmunotherapy* . The stand-
ard approaches focus on instance segmentation by assigning unique
identifiers to individual cells to facilitate downstream analysis®"’.
Hover-net represents a notable advancement in addressing the limita-
tions of semantic breadth and cell categorization within segmentation
tasks, by incorporating cell classification into the segmentation pro-
cess®’; however, traditional methods typically rely on bounding box
detection and struggle with diverse cell morphologies and irregular
shapes. Recent efforts aim to overcome these challenges by adopting
morerefined representations and accommodating the multi-resolution
nature of biological imaging® “*. CellViT isamarquee example that lever-
ages SAM’s encoder backbone toimprove hierarchical representation,
particularly for nucleus segmentation. BiomedParse can contribute to
thislongline of exciting research work by enabling cell segmentationand
identificationin one fell swoop and enhancing generalizability through
joint training on a diverse range of image modalities and cell types.
While BiomedParse has demonstrated promising potential for uni-
fying biomedical image analysis, growth areas abound. First, although
BiomedParse has demonstrated high accuracy (for example, Dice
scores) in identifying relevant pixels in an image for a given object
type, by default it does not differentiate individual object instances
and requires post-processing to separate the instance masks, which

isimportantinsome applications such as cell counting. Second, while
BiomedParse can already perform image analysis from text prompt
alone, it currently does not support interactive dialog with usersin a
conversational style like GPT-4. To address this, we plan to develop a
conversational system that can better tailor to complex user needs.
Finally, BiomedParse currently treats non-two-dimensional (2D) modal-
ities such as CT and magnetic resonance imaging (MRI) by reducing
themto 2Dslices, thus failing to utilize the spatial and temporal infor-
mation in the original modalities. In future work, we need to extend
BiomedParse beyond 2D image slices to facilitate three-dimensional
(3D) segmentation, detection and recognition.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-024-02499-w.
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Methods

Details of BiomedParseData

We created a large-scale biomedical image parsing dataset called
BiomedParseData, where each image is associated with a collection
of objects. Each objectis annotated with the segmentationmaskanda
canonical semanticlabel specifying the object type from abiomedical
object ontology. Additionally, each semantic label comes with a set
of synonymous textual descriptions for model training. BiomedPar-
seData was created by synthesizing 45 publicly available biomedical
segmentation datasets across nine imaging modalities, comprising
1.1millionimages, 3.4 millionimage-mask-label triples and 6.8 million
image-mask-descriptiontriples (Fig.1b and Supplementary Table1).
Toensure the quality of BiomedParseData, we imposed stringent inclu-
sion criteria: each image had to be manually or semi-manually seg-
mented at the pixel level and aname was available for each segmented
object from the dataset description. For 3D imaging modalities such
as CT and MRI, we pre-processed each volume into in-plane 2D slices
to be consistent with other modalities.

For model training and evaluation, we randomly split each original
datasetinto 80% training and 20% testing. Slices from each 3D volume
always appear in the same split to prevent information leakage.

To harmonize natural language variations in noisy object descrip-
tions, we use GPT-4 to assist the creation of a three-layer biomedi-
cal object ontology (Fig. 1a). The base layer comprises three broad
semantic categories: organ, abnormality and histology. The next
layer comprises 15 meta-object types (for example, heart in organ
and tumor in abnormality). The most fine-grained layer comprises
82 object types, such as left heart ventricle and enhancing tumor.
Specifically, we first used GPT-4 to generate a preliminary hierarchi-
cal structure for biomedical image analysis and propose candidate
names for individual object types, drawing from a wide range of
tasks and textual descriptions across the source datasets. We then
manually reviewed these candidates and mapped them to standard-
ized Observational Health Data Sciences and Informatics (OHDSI)
vocabularies using Athena®. Most of these candidates are mapped
to 15 meta-object types by searching in the OHDSI vocabulary. For
some of them that cannot be mapped to the meta-object types or
the meta-object types do not existin the OHDSI vocabulary, we asked
GPT-4 to suggest the appropriate meta-object type names and do
the mapping. We introduce ‘other’ as a catch-all category. For future
expansion, we expect that the first two layers are relatively stable,
while our framework can easily incorporate new object types in the
fine-grained layers.

To enhance the robustness of BiomedParse in handling diverse
text prompts, we also used GPT-4 to generate synonymous textual
descriptions for each semantic label, following other recent effortsin
using GPT-4 for synthetic data generation® ", Specifically, we adopted
atemplatic normalization for each dataset by formulating the unify-
ing image analysis task as identifying {OBJECT TYPE] in [ANATOMIC
SITE][MODALITYT, such as ‘enhancing tumor in brain MRI’ (Extended
DataFig.1). We thenintroduced linguistic diversity into these descrip-
tions by using GPT-4 to generate variations in professional language
(SupplementaryFig.1), as well asintroducing synonymous variations
foreach component (Supplementary Fig. 2). We manually checked all
the templates that we used to prompt GPT-4 for variations to avoid
incorrectness and hallucinations. We define incorrectness and hal-
lucination as (1) not mentioning the target object; (2) only describing
the image; (3) referring to another target; and (4) describing another
image modality. We found that the descriptions provided by GPT-4 are
generally correctand only less than10% templates were removed from
theinitial prompts. For training, the number of prompts depends onthe
object type, withaminimum prompts of 1, anaverage prompts of 8.28,
amedian prompts of 7and amaximum prompt of 36. We randomly sam-
pled one prompt for training. For inference, we only used one prompt
for each data point and used the original description as the prompt.

We compared the performance between varying the text promptat the
inference stage and using a fixed one based on the original description
and did not observe astatistically different performance (Supplemen-
tary Fig. 11). In each training epoch, we randomly sampled a descrip-
tion for each image-mask pair, enabling BiomedParse to understand
diverse text prompts.

Details of BiomedParse

Existing image analysis methods often focus on segmentation alone.
They typically expect spatial input prompts such as bounding box or
scribble for the object to segment and focus on learning spatial embed-
ding such as bounding box coordinates'*"',

In contrast, BiomedParse follows SEEM*° and focuses on learning
text prompts. Specifically, BiomedParse adopts a modular design,
comprising an image encoder, a text encoder, a mask decoder and a
meta-object classifier (Fig. 1c). We initialized the model from SEEM,
with each module described in detail below.

The input to BiomedParse is an image and a text prompt, which
are passed along to the image and text encoders, respectively. The
text prompt specifies the object type for segmentation and detec-
tion in the image. The image encoder processes the high-resolution
image and outputs downsampled embeddings. We provide a flexible
choice of backbone architectures with Focal” and SAM-ViT. The
text encoder processes the user-provided prompt and generates
language embeddings. We provide options to use the pretrained
biomedical language model PubMedBERT? or training a transformer
from scratch. The base version of BiomedParse adopts Focal as an
image encoder and the text encoder transformer fully trained on
BiomedParseData.

The mask decoder outputs asegmentation mask that has the same
size as the original image, with a probability between 0 and 1 for each
pixel, indicating how likely the pixel belongs to the designated object
inthe text prompt. The meta-object classifier includesinput fromthe
image and text prompt and output object semantics. We follow SEEM*
and X-Decoder®® to build the segmentation decoder head. The decoder
isatransformer that cross-attend the image and text embeddings and
gradually upsample the image features back to high-resolution pixels.
At the last layer, the attention dot product on the pixel embeddings
delivers the segmentation mask.

Details of model training

The training of BiomedParse is around segmentation with grounding
text. Therefore, during training time the following linear combination
oflosses is minimized:

£ = ale g rext + DLm peE text + CLm pice texts 0
where c stands for meta-concept classification with cross-entropy loss

(CE), mstands for mask prediction with binary cross-entropy and Dice
loss. The formula for the losses are as follows:

C
Lc_CE_text =- Zyc IOg( yc)) 2)
c=1
1 N -
Lm_BCE_text = P 23: (mp IOg(mp) +(1- mp) IOg(l - mp)) s 3
pe
23 e pMplity

Lm_Dice_text =1- z 4)

pe.’l’mp + Epe?mp

where yisthe one-hot vector of true meta-conceptoverc=1,---,Cand
yis the predicted meta-concept probability distribution. m,, is the
ground-truth binary mask for pixel p € and m,,is the predicted pixel
probability. We follow SEEM** and append the visual sampler loss and
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other auxiliary losses during training to enable interactive spatial
refinement, which we refer to the original paper for details. For
BiomedParse training, we assign equal weights for the three losses.

We initialized BiomedParse from the pretrained SEEM model.
As aresult, we follow the exact hyperparameter setting in the SEEM
paper to perform continue training for text prompt-based segmenta-
tion. Specifically, we fix learning rate of 10 and train for 20 epochs.
To train BiomedParse, we used 16 NVIDIA A100-SXM4-40GB GPUs
for a duration of 58 h. We performed inference evaluation with four
NVIDIA RTX A6000 GPUs. The inference time with a single NVIDIA
RTX A6000 GPU is 0.17 s per data point. The minimum hardware
needed for performing the inference is one V100 GPU with 16 GB
memory. The post-processing time in the object recognition task are
0.11sand 0.07 son average for target selection and mask aggregation
stages, respectively.

Mixed dataset training. To enable flexible incorporation of multiple
datasets, we perform random mixing at abatch level. We denote each
dataset of amodality as ©,,form =1, ---, M. The creation of each batch
follows the procedure below:

 Ineachiteration i, we aggregate a batch from K mini-batches
b, bi.For each mini-batch b, we randomly select dataset
D, form=1, ..., Mwith probability p,,and sample the
mini-batch without replacement.

+ Concatenate all mini-batches B’ = [b/, .-, bl ].

« Perform training step with batch B'.

We can flexibly control the training data distribution from all the
datasets with the sampling probability p,.. As the size difference of the
datasets can be large, we define a parametric probability distribution

Dl

i 0<As<L S)
zerI |®m’|/1

Pm =

When A1 =1, we sample the mini-batch with probability propor-
tional to the size of the datasets, thus each example from any dataset
has equal chance to be selected. The downside is that the training will
be overwhelmed with the huge datasets, while ignoring the smaller
ones which are also important.

Onthe otherextreme, whenA = 0, each dataset has equal chance to
beselectedineachiteration. This ensures agood diversity of tasks, but
the small datasets which have very few examples will be repeated for a
large amount of time, causing overfitting to the training examples. On
the other hand, the large datasets will never be exhausted in a limited
number of epochs.

As abalance between the two extremes, we set A=1/2 for the first
five epochs, then set A =1for the next ten epochs and A =1/2 again for
thelast five epochs.

Implementation of competing methods

We compared BiomedParse to the state-of-the-art segmentation
models, SAM' and MedSAM".. We recognize the importance of pre-
cise bounding boxes as the model input, so we evaluated competing
methodsintwo settings: (1) employing gold-standard bounding boxes,
and (2) utilizing bounding boxes predicted by the state-of-the-art
object detection model Grounding DINO" to provide bounding box
prompts. For the first setting, we followed previous work" by deriv-
ing bounding boxes from gold-standard masks, ensuring each box
tightly encompassed the mask with a uniform margin of 10 pixels. In
the second setting, we adhered to the inference pipeline of Grounding
DINO where, when presented with multiple bounding box predic-
tions, we selected the one with the highest confidence score. This
text-to-box-to-segmentation scheme follows the idea of previous
work®. In addition to comparing current SAM-based state-of-the-art
models, we also evaluated BiomedParse against (1) the established

medical segmentation approach nnU-Net”, an end-to-end U-Net
architecture that adapts to various medical imaging modalities using
a purely convolutional module and fully supervised learning with-
out prompts, and (2) the general domain segmentation architecture
DeeplabV3+, which uses ResNet-101as the architecture backbone with
an Atrous Spatial Pyramid Pooling module for decoding and upsam-
pling bottleneck features with multiple fields of view’®. To maintain
uniformity across comparisons, all input images were resized to
1,024 x1,024 pixels. We use the same test split of BiomedParseData for
evaluation across competing methods, and performance was quanti-
fied using the median Dice score on each task. We recognize that the
train—-test splits are different across the original evaluations of the
competing methods, and the BiomedParseDatatest split could contain
examples that were used to train other models. We note that theimple-
mentations for MedSAM, SAM and Grounding DINO were used as is for
inference purposes without any fine-tuning. As for the task-specific
nnU-Net models®® and the DeepLabV3+ models’, we trained both
network architectures in 2D with one binary segmentation model for
each target in each modality, resulting in 95 task-specific models for
eachmethod. We adopted the built-in automatic hyperparameter con-
figurationinnnU-Net. For the Deeplabv3 network, we trained all models
in50 epochs with batchsize of four and alearning rate of 0.0003 with
weight decay of 0.0001 using AdamW optimizer.

For continued training MedSAM and SAM experiments, we pro-
vided the entire training dataset that was used to train BiomedParse.
MedSAM and SAM are provided with oracle bounding boxes during
training and inference. We fixed the SAM and MedSAM backbone
respectively and further trained for ten epochs each, resulting in
SAM-FT and MedSAM-FT, respectively. When evaluating UniverSeg®,
we provided 16 supportimages for the model as examples, as shown
as the optimal number of support images in the original paper. For
CellViT*, we used the PanNuke"” dataset as the evaluation datasets,
which contains cell segmentations across tissue types. We compared
BiomedParse to SegVol**, SAT* and Swin UNETR? using CT imaging
from the Amos22 (ref. 16) dataset as SegVol is specific to CT, and
SAT is specific to CT, MRI and positron emission tomography. Both
SegVol and SAT adapted SAM architecture to 3D medical volume and
leverage text of anatomical regions as input besides visual prompts
of boxes and points. Swin UNETR, built on Swin transformers, is a
widely used benchmark for CT segmentation tasks and achieved
top performance on BraTS challenge”. We used the strongest avail-
able model weights and the same text prompts as specified in the
respective papers.

Detecting invalid textual description

BiomedParse by design caninput any image and text prompt; however,
atext prompt may beinvalid, specifying an object that does not existin
the givenimage® 2. For example, the request to identify and segment
‘left heart ventricle’ in adermoscopy image should be rejected by the
model asinvalid. Itis critical to detect and reject invalid text prompts
to pre-empt hallucinations”.

Inprinciple, the mask decoder should output low pixel probabili-
ties for invalid text prompt; however, given the sheer number of pixels,
some might getarelatively high output probability simply by chance,
thusleadingto erroneous object detection and segmentation results.
Toaddressthis problem, we observe that while individual pixels might
get noisily high probabilities, collectively their distribution would be
rather different compared to pixelsin valid objects. Consequently, we
can estimate the distribution of its pixel probabilities from training
data, and then estimate how likely the pixel probabilitiesinatestimage
aredrawn from the same distribution.

Specifically, after BiomedParse was trained, for each object type,
we computed the average object pixel probability for each training
image containing objects of the given type, and fit a beta distribution
forallthese probabilities. At test time, for a given image, we computed
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the average object pixel probability for the predicted object segments
ofthe given object type, and compute the Pvalue using a one-sample
K-S test”. A smaller Pvalue indicates that the predicted object seg-
ments are unlikely tobe correct. Toincrease the robustness, inaddition
to pixel probability, we also consider the RGB values. In particular, for
each color channel (R, Gand B), we similarly fit abeta distribution from
the average value for valid objects in training, and compute the cor-
responding Pvalue for the predicted object segments in a test image.
Overall, we treat these four tests asindependent and use their product
as the summary Pvalue.

In this way, we can obtain asummary Pvalue for any given pair of
text prompt and image. To identify a summary P value threshold for
separating valid inputs from invalid ones, we created an invalid data-
set by mixing datasets of different modalities. For example, we take a
targetina certain modality (for example heart anatomiesin MRI), and
apply the corresponding text prompt toidentify this targetin another
modality (for example endoscopy) if this target has never appearedin
that modality. The text prompts for heart anatomies are now invalid
in the endoscopy dataset, providing us valid examples (prompts in
the original modality) and invalid examples (prompts in the alterna-
tive modality). We plot the distribution for both valid text prompts
(for a given image) and invalid ones (Fig. 2f). For comparison against
Grounding DINO, we useits confidence score given atext promptand
animage forinvalid input detection.

Attention map conditioned on the textual description

To visualize the shape of each segmentation object type, for example
‘hepatic vessel in CT’, we collected the predicted pixel probabilities
for each object type and aggregated probabilities from all images.
The pixel-level probability is derived from the top layer attention on
the pixel. The attention map, reflecting the shape for a target ¢, is
obtained in a four-step approach. First, we collected all
BiomedParse-predicted pixel attention for target t as p,, -+, p, €
[0,1]""across nexamplesin the test set. Second, we initialized shape
distribution for target t as M! = p;. Third, for iterationi=1, -, n-1,
we computed 2D cross-correlation between p,; and M? and shifted
pi.1 to be aligned with w! at highest cross-correlation, and updated
the ensemble distribution M, | = M; +p,,,, where p,,, denotes the
shifted attention matrix. Finally, the attention map for target ¢ is
normalized as M /n. For 3D segmentation targets suchas CT and MRI,
we firstaggregated the predictions within one volume without shift-
ing and then aligned the volume-aggregated masks using the
above method.

Details of experiments onirregular-shaped objects

Medicalimage segmentation models like MedSAM require abounding
box as input. When the shape of the target is ‘irregular’, it is hard for
the bounding box to precisely define the region of interest. To quantify
the ‘regularity’ of a target mask M, we define the following three met-
rics: Box Ratio measures the degree to which the target mask is similar

to its tight bounding box: BoxRatio(M) = o '"’Z‘M)l where Box(M) is the

tight bounding box around mask Mand |- | denotes the areameasured
in number of pixels. Convex Ratio measures how convex the target

mask is and is defined as ConvexRatioM)= —___  where
|ConvexHull(M)|

ConvexHull(M) is the convex hull of mask M. Convex hullis defined as
theintersection of all convex sets containing a given subset of a Euclid-
ean space. In other words, it is the smallest convex region that covers
the shape. Inverserotationalinertia (IRI) measures how spread out the
area of the target mask is. To begin with, the rotational inertia (RI) of
M relative to its centroid ¢, isRIM) = 3, || x — cM||§ ,where xis the
coordinate of each pixel in the mask and ¢, is the coordinate of the
centroid. Tostandardize the metric to be independent of the total mask
area, we take the inverse of the RI and scale by the value of a
round-shaped mask with the same area, representing the lowest

rotational inertia achievable by any mask with the same area:

IRIM) = Ll .Under this definition,any mask has 0 <IRI <1, withany
2m-RIM)”

round-shaped mask having IRIequal to1.

Details of experiments on object recognition

We built a hierarchical structure putting all supported targets under
one modality at one anatomic site. Given any image, for example
abdominal CT, we traverse allthe available targetst=1, ---,munder the
branch that are exclusive to each other, and prompt the BiomedParse
model sequentially to get m prediction of mask probabilities p, ---, p™.
Itis possible that the predicted masks can overlap with each other. The
challenges then are howto select the right set of targets in the specific
image and how to determine the right mask regions for the selected
targets toavoid overlapping. We used a two-stage approach for object
recognition, including a target selection stage and amask aggregation
stage. Inthe target selection stage, we first calculate the original mask
areaforeachtargettasA’. Then, weiterate through the pixels. For each
pixel (i,j), we rank the targets that have plxel probability p > 0.5.The
target assigned to pixel (i,j) is T = argmaxp {\fter this round of pixel
assigning, the fmal area for each target tis A = 2, Ar,=c. The targets
with final area 4° > A4¢ are the selected targets, thh A being the
user-specified threshold. Inthe mask aggregation stage, we discard all
unselected target masks completely and theniterate through the pixels
again. For each pixel, the most probable target ¢ with pfj > 05 is
assigned. The pixels with predicted probabilities pfj <0.5 for all
selected targets are left blank.

For the baseline method using Grounding DINO with SAM and
MedSAM, we first prompted Grounding DINO with the set of targets to
retrieve a collection of bounding boxes with confidence scores. Then
we implemented nonmaximum suppression””” to select a subset of
identified targets in the scene, minimizing the overlapping between
thetargets. To get the segmentation masks for these identified targets,
we further prompted SAM and MedSAM with the bounding boxes to
retrieve the corresponding predictions.

Data collection and analysis

All source image data were from publicly available datasets. We used
Python (v.3.10.12) to curate and preprocess the image data. For the
textual description for the objects in the images, we used GPT-4 pro-
vided by Azure OpenAl to generate text data. This work used open-
source code bases and libraries to analyze the data. We used SEEM
(https://github.com/UX-Decoder/Segment-Everything-
Everywhere-All-At-Once) for the main model architecture and training
of the model on the datasets. We used matplotlib v.3.8.2 and seaborn
v.0.11.2 to visualize the data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

BiomedParseData can be accessed at https://aka.ms/biomedparse-
release. The three real-world pathology images, including the annota-
tions by pathologists and BiomedParse, can be accessed at https://
aka.ms/biomedparse-release.

Code availability

BiomedParse canbe accessed at https://aka.ms/biomedparse-release,
including the model weights and relevant source code. We include
detailed methods and implementation steps in the Methods to allow
forindependentreplication.
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Extended Data Fig. 1| Number ofimages in each of the 25 anatomic sites from 9 modalities. One anatomic site could present in multiple modalities.
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Extended Data Fig. 2| Ablation studies comparing the performance of
BiomedParse and two variants. BiomedParse-SAM stands for using SAM to
initialize the image encoder. BiomedParse-PubmedBERT stands for using the
frozen PubmedBERT as the text encoder. Each modality category contains
multiple object types. Each object type was aggregated as the instance median
tobe showninthe plot.Ninthe plot denotes the number of images in the
corresponding modality. The numbers of object types in each modality are as
follows: N=112for All, N =27 for CT, N=34 for MRI, N=12 for X-Ray, N = 24 for
Pathology, N =7 for Ultrasound, N =2 for Fundus, N=3 for Endoscope,
N=2for Dermoscopy, and N=1for OCT. Each box shows the quartiles of the

distribution, with the center as the median, the minimum as the first quartile,

and the maximum as the third quartile. The whiskers extend to the farthest data
point that lies within 2 times the inter-quartile range (IQR) from the nearest
quartile. Data points that lie outside the whiskers are shown as fliers. *indicates
the significance level at which BiomedParse outperforms BiomedParse-
PubmedBERT, with two-sided paired t-test p-value <1x 102 for **, p-value <
1x1073for**, p-value <1x 10*for *** Exact p-values for the comparison between
BiomedParse and BiomedParse-PubMedBERT are as follows: p-value <

9.52x10"° for All, p-value <1.67 x 10> for CT, p-value < 4.87 x10** for MRI, p-value <
1.98 x10*for Pathology, and p-value < 7.13 x10* for Ultrasound.
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Extended DataFig. 3 | Evaluating BiomedParse and competing methods

in terms of Average Symmetric Surface Distance. Box plot comparing the
performance of BiomedParse and competing methods in terms of Average
Symmetric Surface Distance (ASSD). Smaller ASSD indicates better segmentation
performance. Each box shows the quartiles of the distribution, with center as

the median, minimum as the first quartile, and maximum as the third quartile.
The whiskers extend to the farthest data point that lies within 2 times the inter-
quartile range (IQR) from the nearest quartile. Data points that lie outside the
whiskers are shown as fliers. Each modality category contains multiple object
types. Each object type was aggregated as the instance median to be shownin

the plot. The numbers of object types in each modality are as follows: n =112 for
All, n=27 for CT, n=34 for MRI, n=12 for X-Ray, n=24 for Pathology, n=7 for
Ultrasound, n=2for Fundus, n=3for Endoscope, n =2 for Dermoscopy,and n=
1for OCT. *indicates the significance level at which BiomedParse outperforms
the best-competing method, with two-sided paired t-test p-value <1x 10?2 for **,
p-value <1x107for***, p-value <1x 10 for *** Exact p-values for the comparison
between BiomedParse and MedSAM with oracle box prompt are as follows:
p-value <3.43 x10*for All, p-value < 2.61 10" for CT, p-value < 7.73 x 10° for MRI,
and p-value <2.94 x 10 for Pathology.
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Extended Data Fig. 4 | Comparing BiomedParse with biomedical-specific
text prompt segmentation models. Bar plot comparing BiomedParse with
biomedical-specific text prompt segmentation models across different organs
on CTin terms of Dice score. Each bar shows the mean of the distribution, with
error bar indicating the 95% confidence interval. The sample sizes for the target
organsare as follows: n=27,779 for All, n = 4,409 for Aorta, n =864 for Bladder,
n=1,677 for Duodenum, n=1,964 for Esophagus, n=712 for Gallbladder, n=4,105
for Inferior vena cava, n = 635 for Left adrenal gland, n =1,776 for Left kidney,
n=4,648for Liver, n=1,345 for Pancreas, n =571 for Right adrenal gland, n=
1,649 for Right kidney, n=1,587 for Spleen, and n =1,837 for Stomach. *indicates
the significance level at which BiomedParse outperforms the best-competing
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method, with two-sided paired t-test p-value <1x10?for **, p-value<1x10?

for ***, p-value <1x10™* for ***, Exact p-values for the comparison between
BiomedParse and SegVol are as follows: p-value <2.23 x 103% for All, p-value <
1.86 X108 for Aorta, p-value <1.73 x 107 for Bladder, p-value < 3.44 x 108

for Duodenum, p-value <5.00 x 10" for Esophagus, p-value <3.37 x 10" for
Gallbladder, p-value < 6.28 x10™ for Inferior vena cava, p-value < 5.08 x 10" for
Left adrenal gland, p-value < 9.26 x 10 for Left kidney, p-value <3.31x10% for
Liver, p-value <2.27 x 10 for Pancreas, p-value <1.01 x 10 for Right adrenal
gland, p-value <2.98 x10? for Right kidney, p-value <1.09 x10?° for Spleen, and
p-value <4.68 x10% for Stomach.
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Extended DataFig. 5| Comparing BiomedParse with fine-tuned SAM and
MedSAM. Bar plot comparing BiomedParse and SAM and MedSAM when SAM
and MedSAM are both further trained on the entire BiomedParseData. Both SAM
and MedSAM were provided with oracle bounding box around the segmentation
target during the training and the inference stage. Each bar shows the mean of the
distribution, with error bar indicating the 95% confidence interval. Each modality
category contains multiple object types. Each object type was aggregated as the
instance median to be shown in the plot. We show the numbers of object typesin
each modality are as follows. The numbers of object types in each modality are

[ SAM-FT (oracle box)

as follows: n=105 for All, n =26 for CT,n=34 for MRI, n = 6 for X-Ray, n =24 for
Pathology, n =7 for Ultrasound, n =2 for Fundus, n =3 for Endoscope, n=2

for Dermoscopy, and n=1for OCT. *indicates the significance level at which
BiomedParse outperforms the best-competing method, with two-sided paired
t-test p-value <1x 10?2 for **, p-value <1x 1073 for **, p-value <1x 10* for **** Exact
p-values for the comparison between BiomedParse and SAM-FT with oracle box
prompt are as follows: p-value <1.78 x 107 for All, p-value <2.02 x 10*for CT,
p-value <1.32 x10?for X-Ray, p-value < 3.52 x10** for Pathology, and p-value <
1.49 x10?for Ultrasound.
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Extended Data Fig. 6| Comparison between BiomedParse and competing
methods on the MedSAM benchmark. We evaluated MedSAM and SAM

using the ground truth bounding box for the segmentation.For nnU-Net and
DeepLabV3+, wereported the evaluation reported by MedSAM. Results are
shown by imaging modality, with statistical significance comparison between
BiomedParse and best-competing method MedSAM. Each box shows the
quartiles of the distribution, with center as the median, minimum as the first
quartile, and maximum as the third quartile. The whiskers extend to the farthest
datapoint that lies within 2 times the inter-quartile range (IQR) from the
nearest quartile. Data points that lie outside the whiskers are shown as fliers.

Each modality category contains multiple object types. Each object type was
aggregated as the instance median to be shown in the plot. The numbers of object
types in each modality are as follows: n=50 for All, n=18 for CT, n=15 for MRI,
n=6for X-Ray, n=1for Pathology, n =6 for Ultrasound, n=2 for Fundus, n=1for
Endoscope, and n=1for Dermoscopy. *indicates the significance level at which
BiomedParse outperforms the best-competing method, with two-sided paired
t-test p-value <1x10?2for **, p-value <1x 10° for ***, p-value <1x 10 for ****, Exact
p-values for the comparison between BiomedParse and MedSAM with oracle box
prompt are as follows: p-value <2.98 x 10" for All, p-value < 7.08 x 10 for CT, and
p-value <4.35x102for MRI.
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Extended Data Fig. 7| Comparing the improvement of BiomedParse over mean statistics over one object type in our segmentation ontology. We show the
SAM with shapeirregularity. Scatter plots comparing the improvement of regression plot with the 95 confidence interval as the error bands. The p-values

BiomedParse over SAM with shape irregularity in terms of box ratio (left), convex show the two-sided Wald test results.
ratio (middle), and inversed rotational inertia (right). Each dot represents the
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  All source image data were from publicly available datasets. We used Python (version 3.10.12) to curate and preprocess the image data. For
the textual description for the objects in the images, we used GPT-4 provided by Azure OpenAl to generate text data.

Data analysis This work uses open source code bases and libraries to analyze the data. We used SEEM( https://github.com/UX-Decoder/Segment-
Everything-Everywhere-All-At-Once) for the main model architecture and training of the model on the datasets. Our model can be accessed at
https://aka.ms/biomedparse-release, including the model weights and relevant source code. We include detailed methods and
implementation steps in the Methods to allow for independent replication. We used matplotlib==3.8.2 and seaborn==0.11.2 to visualize the
data. All the codes to reproduce our experiments will be made public upon publication.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

BiomedParseData can be accessed at https://aka.ms/biomedparse-release. The three real-world pathology images, including the annotations by pathologists and
BiomedParse, can be accessed at https://aka.ms/biomedparse-release. BiomedParse can be accessed at https://aka.ms/biomedparse-release, including the model
weights and rel-evant source code.
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Reporting on sex and gender N/A

Population characteristics N/A
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Ethics oversight
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

Our dataset was created by synthesizing 45 publicly available biomedical image segmentation datasets, comprising 1,050,227 images,
3,367,496 image-mask-label triples, and 6,696,943 image-mask-description triples. For model development, we used 340,081 images,
844,652 image-mask-label triples, and 1,729,052 image-mask-description triples. 102,855 image-mask-label triples were used to evaluate
model performance. We decided on our data collection based on medical image segmentation literatures, and covered most of the common
imaging modalities and tasks. We aimed for diversity of our coverage, and achieved a total data size that is among the largest so far.

To ensure the quality of data, we imposed stringent inclusion criteria: each image had to be manually or semi-manually segmented at the
pixel level, and a name was available for each segmented object from the dataset description. We excluded datasets that duplicate the tasks
from other datasets in use to make sure the model training is balanced. We also excluded labels in the datasets that are noisy to ensure the
quality of training.

We trained the model with randomization in gradient descent, batch data sampling and mixing, and data loader shuffling. The model
performance is repeatable across different randomization. We evaluated the model with different randomization of text prompt, and
achieved statistically in-differentiable performance. While the results are reproducible statistically, exact values will be affected by
randomization and computational error in different environments.

For model training and evaluation, we randomly split each original dataset into 80% training and 20% testing. Slices from each 3D volume
always appear in the same split to prevent information leakage.

Performance on the test image and labels were blind to the researchers before final evaluation. Any meta data of the source datasets were
also held-out during model training.
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