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A foundation model for joint segmentation, 
detection and recognition of biomedical  
objects across nine modalities

Theodore Zhao1,6, Yu Gu    1,6, Jianwei Yang1, Naoto Usuyama1, Ho Hin Lee    1, 
Sid Kiblawi    1, Tristan Naumann    1, Jianfeng Gao1, Angela Crabtree    3, 
Jacob Abel2, Christine Moung-Wen2, Brian Piening    2,3, Carlo Bifulco2,3, 
Mu Wei    1  , Hoifung Poon    1   & Sheng Wang    4,5 

Biomedical image analysis is fundamental for biomedical discovery. Holistic 
image analysis comprises interdependent subtasks such as segmentation, 
detection and recognition, which are tackled separately by traditional 
approaches. Here, we propose BiomedParse, a biomedical foundation 
model that can jointly conduct segmentation, detection and recognition 
across nine imaging modalities. This joint learning improves the accuracy 
for individual tasks and enables new applications such as segmenting 
all relevant objects in an image through a textual description. To train 
BiomedParse, we created a large dataset comprising over 6 million triples 
of image, segmentation mask and textual description by leveraging natural 
language labels or descriptions accompanying existing datasets. We showed 
that BiomedParse outperformed existing methods on image segmentation 
across nine imaging modalities, with larger improvement on objects with 
irregular shapes. We further showed that BiomedParse can simultaneously 
segment and label all objects in an image. In summary, BiomedParse is an 
all-in-one tool for biomedical image analysis on all major image modalities, 
paving the path for efficient and accurate image-based biomedical discovery.

Biomedical image analysis is critical to biomedical discovery because 
imaging is one of the most important tools for studying physiology, 
anatomy and function at multiple scales from the organelle level to 
the organ level1–4. Holistic image analysis comprises multiple subtasks, 
such as segmentation, detection and recognition of biomedical objects. 
Segmentation aims to divide an image into segments representing 
different objects, often requiring the aid of a user-provided bound-
ing box for each object of interest5,6. Detection aims to identify the 
location of an object of interest in the image7, whereas recognition 
aims to identify all objects within an image8. Standard image analysis 

methods typically approach these tasks separately, using specialized 
tools for individual tasks9. Despite their encouraging performance, 
such a disjointed approach misses opportunities for joint learning and 
reasoning across these interdependent tasks.

For example, a lot of previous image analysis works focus on seg-
mentation alone, thus ignoring key semantic information from interde-
pendent tasks, such as metadata and object type names. This results in 
suboptimal segmentation while imposing substantial burden on users, 
as many state-of-the-art segmentation tools require users to provide a 
tight bounding box indicating the location of an object of interest10,11.  
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Fig. 1 | Overview of BiomedParse and BiomedParseData. a, The GPT-4 
constructed ontology showing a hierarchy of object types that are used to unify 
semantic concepts across datasets. Bar plots showing the number of images 
containing that object type. b, Bar plot showing the number of image–mask–
description triples for each modality in BiomedParseData. CT, computed 
tomography; MRI, magnetic resonance imaging; OCT, optical coherence 
tomography. c, Flowchart of BiomedParse. BiomedParse takes an image and a 
text prompt as input and then outputs the segmentation masks for the objects 
specified in the prompt. Image-specific manual interaction such as bounding box 
or clicks is not required in our framework. To facilitate semantic learning for the 

image encoder, BiomedParse also incorporates a learning objective to classify 
the meta-object type. For online inference, GPT-4 is used to resolve text prompt 
into object types using the object ontology, which also uses the meta-object  
type output from BiomedParse to narrow down candidate semantic labels.  
d, Uniform Manifold Approximation and Projection (UMAP) plots contrasting 
the text embeddings for different cell types derived from BiomedParse text 
encoder (left) and PubMedBERT (right). e, UMAP plots contrasting the image 
embeddings for different cell types derived from BiomedParse image encoder 
(left) and Focal (right).
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The bounding box requirement leads to three limitations. First, users have 
to manually draw bounding boxes in the image, which requires domain 
expertise to identify the locations and shapes of the target objects. Sec-
ond, bounding boxes, which are often rectangular, fall short of accurately 
representing objects with irregular or complex shapes. Third, bounding 
box-based approaches are not scalable for images containing a large 
number of objects, such as segmenting cells in a whole-slide pathology 
image, as users need to provide a bounding box for each object.

In this paper, we propose to approach biomedical image analysis 
as image parsing, a unifying framework for joint learning and reasoning 
across segmentation, detection and recognition12–14. Specifically, we 
have developed BiomedParse, a biomedical foundation model for image 
analysis that is capable of carrying out all three tasks by leveraging their 
interdependencies, thus addressing key limitations in traditional meth-
ods. In particular, joint learning of object detection and recognition 
eliminates the need for user-specified bounding boxes, as segmenta-
tion can be carried out using semantic labels from text prompts alone.

The major bottleneck for pretraining BiomedParse is data. While 
biomedical segmentation datasets abound15–18, there are relatively few 
previous works on object detection and recognition in biomedicine, 
let alone datasets covering all three tasks. To address this problem, we 
propose a new approach for pretraining BiomedParse using no more 
than standard segmentation datasets. The key insight is to leverage 
readily available natural language labels or descriptions accompanying 
those datasets and use GPT-4 to harmonize these noisy, unstructured 
texts with established biomedical object ontologies. This enables us to 
construct BiomedParseData, a biomedical image analysis dataset com-
prising 3.4 million triples of image, segmentation mask and semantic 
labels of the biomedical object and 6.8 million image–mask–description  
triples, from over 1 million images. The semantic labels encompass 82 
major biomedical object types across 9 imaging modalities.

Unlike segmentation methods that focus on identifying salient 
segment boundary within a bounding box, BiomedParse learns to 
model typical shape of each object class, thus mimicking how humans 
perceive objects in an image. BiomedParse can segment images 
using text prompts alone (for example ‘inflammatory cells in breast 
pathology’), without requiring any user-specified localization such 
as bounding boxes. Consequently, BiomedParse can better recognize 
and segment objects of irregular and complex shapes, which are very 
challenging for traditional methods using rectangular bounding boxes. 
Moreover, BiomedParse can recognize all objects in an image, without 
requiring any user text prompt.

We conduct a large-scale study to evaluate BiomedParse on 102,855 
held-out image–mask-label triples across nine modalities for segmen-
tation, detection and recognition. On segmentation, BiomedParse 
established new state-of-the-art results, outperforming previous best 
methods such as MedSAM11 and SAM10. Moreover, using text prompts 
alone, BiomedParse is much more scalable than these previous meth-
ods, which require orders of magnitude more user operations in speci-
fying object-specific bounding boxes to perform competitively. We 
also demonstrated that BiomedParse can accurately detect invalid 
text prompts describing nonexistent objects in the image. Biomed-
Parse achieves even larger improvement in image analysis accuracy 
for irregular-shaped objects, attaining a 0.857 Dice score that is 39.6% 
higher than the best-competing method. On recognition, we show how 
BiomedParse can accurately segment and label all objects without any 
user-specified text prompt. Collectively, we introduce a biomedical 
foundation model for biomedical image analysis, achieving superior 
performance on segmentation, detection and recognition, paving the 
way for large-scale image-based biomedical discovery.

Results
Overview of BiomedParse and BiomedParseData
To develop a model that can jointly conduct segmentation, detection 
and recognition, we need a supervision dataset that covers all three 

tasks. To the best of our knowledge, no such datasets exist. To this end, 
we created the dataset BiomedParseData by combining 45 biomedical 
image segmentation datasets and using GPT-4 to generate the canon
ical semantic label for each segmented object.

The key insight is that existing segmentation datasets often con-
tain valuable semantic information about the segmented objects; 
however, such information typically resides in noisy and inconsistent 
natural language text descriptions that do not conform to standard 
biomedical ontologies. To address this challenge, we use GPT-4 to 
create a unifying biomedical object ontology for image analysis and 
harmonize natural language descriptions with this ontology (Methods). 
This ontology encompasses three main categories (histology, organ and 
abnormality), 15 meta-object types and 82 specific object types (Fig. 1a). 
The resulting BiomedParseData contains 3.4 million distinct image–
mask–label triples, spanning nine imaging modalities and 25 anatomic 
sites (Fig. 1b and Extended Data Fig. 1), representing a large-scale and 
diverse dataset for semantic-based biomedical image analysis.

To make BiomedParse better equipped in handling diverse text 
prompts not covered by the canonical semantic labels, we also use 
GPT-4 to synthesize synonymous text descriptions for each semantic 
label and sample from them during training (Methods and Supple-
mentary Figs. 1 and 2). This yielded a total of 6.8 million image–mask–
description triples.

While our method does not use bounding boxes, previous 
state-of-the-art methods such as MedSAM and SAM generally require 
prespecified bounding boxes. We consider two scenarios to provide 
the bounding boxes: oracle bounding box (the minimum rectangular 
bounding box covering a segmented object) and bounding box cre-
ated by Grounding DINO19, a state-of-the-art object detection method 
that can generate bounding boxes from text prompt of an object label. 
Grounding DINO does not perform segmentation.

BiomedParse adopts a modular design under the SEEM 
architecture20, comprising an image encoder (for encoding the input 
image), a text encoder (for encoding the text prompt), a mask decoder 
(for outputting the segmentation mask) and a meta-object classifier 
(for joint training of image encoder with object semantics) (Fig. 1c). The 
image and text encoders were initialized using state-of-the-art Focal21 
and PubMedBERT22, respectively.

Before evaluating image analysis results, we first examine the qual-
ity of embeddings derived from BiomedParse. Specifically, we compare 
the text embeddings from BiomedParse to those from PubMedBERT. 
We found that embeddings from BiomedParse can better distinguish 
fine-grained cell types, with a Silhouette score of 0.89, which is much 
higher than using the embeddings from PubMedBERT (Fig. 1d and 
Extended Data Fig. 2). We also compare the image embeddings from 
BiomedParse with those from Focal. We observed that embeddings from 
BiomedParse are more predictive of tumor malignancy on a pathology 
dataset23 (Fig. 1e). The superior performance of the text and image 
embeddings from BiomedParse necessitates the training of Biomed-
Parse using BiomedParseData, raising our confidence that BiomedParse 
can be an effective approach for biomedical image analysis.

Accurate and scalable segmentation across nine modalities
We first evaluated BiomedParse on biomedical image segmentation 
using the held-out set comprising 102,855 test instances (image–mask–
label triples) across nine imaging modalities (Fig. 2a and Extended 
Data Figs. 2 and 3). We observed that BiomedParse achieved the best 
Dice score, even against the best-competing method MedSAM with 
the oracle bounding box as input (paired t-test P value <10−4). In the 
more realistic setting when MedSAM or SAM is supplied with bounding 
boxes generated by Grounding DINO, the superiority of BiomedParse 
is even more prominent in end-to-end biomedical object detection and 
segmentation, especially in more challenging modalities such as patho
logy and computed tomography (CT) where irregular-shaped objects 
abound. By training on domain-specific datasets, both BiomedParse and 
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MedSAM outperform general-domain methods such as SAM. We further 
observed that BiomedParse outperformed other text prompt-based 
approaches (Supplementary Fig. 3 and Extended Data Fig. 4), includ-
ing SEEM20, SegVol24 and SAT25, task-specific segmentation method 
CellViT26 (Supplementary Fig. 4) on cell segmentation, widely used 
supervised method Swin UNETR27 (Supplementary Fig. 5), nnU-Net28 
and DeepLabV3+29 (Supplementary Fig. 6) and universal biomedical 
segmentation model UniverSeg30 (Supplementary Fig. 7). BiomedParse 
also outperformed SAM continually trained on BiomedParseData and 
MedSAM continually trained on BiomedParseData (Extended Data 
Fig. 5), even though both SAM and MedSAM utilized oracle bounding 
boxes for training and inference.

We showed examples comparing BiomedParse segmentation and 
the ground truth across multiple imaging modalities, demonstrating 
the generalizability of BiomedParse (Fig. 2b). We further compared 
BiomedParse on a benchmark created by MedSAM11 encompassing 50 
tasks and again observed the best performance by BiomedParse, even 
against MedSAM with oracle bounding box (paired t-test P value <10−2), 
further demonstrating the superiority of BiomedParse (Extended Data 
Fig. 6). In addition to being more accurate, BiomedParse is more scal-
able compared to bounding box-based approaches, which stems from 
the generalizability of text prompts across images of the same modality 
or anatomical site, thus eliminating the need for laborious user opera-
tions in providing a tight bounding box for each object. To demonstrate 
this, we compared BiomedParse and previous state-of-the-art methods 
MedSAM and SAM on a cell segmentation dataset with 42 colon pathol-
ogy images (Fig. 2c). Using a single text prompt ‘glandular structure in 
colon pathology image’, BiomedParse achieves a 0.942 median Dice 
score, whereas neither SAM nor MedSAM achieves a median Dice score 
higher than 0.75 without tight bounding boxes as input. In fact, to 
achieve competitive results comparable to BiomedParse with a single 
text prompt, MedSAM requires the users to supply a tight bounding box 
for each of the 430 cells in these images (Fig. 2c). In general, our results 
reveal that the bounding box-based approach is much less accurate on 
irregular-shaped objects, such as tumors and abnormal cells (Fig. 2d,e). 
In contrast, BiomedParse still attained highly accurate segmentation 
for such objects. The scalability and accuracy of BiomedParse bode 
well for its utility in real-world applications.

BiomedParse can also detect invalid text prompts (for example, 
the request to identify a brain tissue in a chest X-ray image), by cal-
culating a P value using Kolmogorov–Smirnov (K–S) test (Methods). 
From preliminary experiments, we found that invalid text prompts 
have an average K–S test P value smaller than 10−3 while the valid ones 

have an average K–S test P value above 0.1 (Fig. 2f). Using 0.01 as the 
P value cutoff, BiomedParse can achieve an estimated performance 
of 0.93 precision and 1.00 recall on detecting invalid input (Fig. 2g). 
BiomedParse substantially outperformed Grounding DINO on inva-
lid input detection (Fig. 2h,i). This enables BiomedParse to perform 
recognition by enumerating candidate object types in the ontology, 
skipping invalid text prompts and generating segmentation masks for 
valid object labels.

Accurate segmentation of irregular-shaped objects
In the previous section, we show that BiomedParse outperformed 
bounding-box-based methods in general. Additionally, as BiomedParse 
learns semantic representation for individual object types, we hypoth-
esize that its superiority over previous methods will be even more 
pronounced in segmenting irregular-shaped objects. To verify this, 
we show the aggregate attention map of each object type learned by 
BiomedParse on test images unseen during training and observed that 
they faithfully reflect object shapes, including many irregular-shaped 
objects (Fig. 3a). Next, we define three metrics to assess the regular-
ity of an object, including convex ratio (the ratio of the object size to 
the tightest convex size), box ratio (the ratio of the object size to the 
tightest rectangle size) and rotational inertia (the difficulty in changing 
the rotational velocity) (Methods). We found that the improvements 
of BiomedParse over SAM and MedSAM are strongly correlated with 
these metrics (average correlation 0.870), indicating that our method 
has a larger improvement on irregular-shaped objects (Fig. 3b–d and 
Extended Data Fig. 7). We also found that BiomedParse achieves larger 
improvement on objects with smaller size (Supplementary Fig. 8). 
Figure 3e illustrates a few examples comparing BiomedParse and Med-
SAM on detecting irregular-shaped objects. Furthermore, we show 
that BiomedParseData has higher average object irregularity than 
the datasets used by MedSAM (Fig. 3f,g and Supplementary Fig. 9), 
and the improvement of BiomedParse is also larger on BiomedParse-
Data (Fig. 3h), highlighting the benefit from joint learning of object 
semantics in detecting the more challenging irregular-shaped objects.

Object recognition using the segmentation ontology
In our final analysis, we explore BiomedParse’s capacity for object 
recognition, which aims to simultaneously segment and label every 
object within an image. Provided with an image, along with its modal-
ity and anatomical site, BiomedParse iteratively performs detection 
and segmentation for all candidate object types within the ontology 
of that modality and anatomical site, and the segmented masks are 

Fig. 2 | Comparison on large-scale biomedical image segmentation datasets. 
a, Box plot comparing the Dice score between our method and competing 
methods on 102,855 test instances (image–mask–label triples) across nine 
modalities. MedSAM and SAM require bounding box as input. We consider 
two settings: oracle bounding box (minimum bounding box covering the gold 
mask); bounding boxes generated from the text prompt by Grounding DINO, a 
state-of-the-art text-based grounding model. Each modality category contains 
multiple object types. Each object type was aggregated as the instance median 
to be shown in the plot. n in the plot denotes the number of test instances in the 
corresponding modality. Significance levels at which BiomedParse outperforms 
the best-competing method, with two-sided paired t-test are **P < 1 × 10−2; 
***P < 1 × 10−3; and ****P < 1 × 10−4. Exact P values for the comparison between 
BiomedParse and MedSAM with oracle box prompt are: P < 1.86 × 10−12 for All; 
P < 2.49 × 10−3 for CT; P < 3.33 × 10−4 for MRI; and P < 3.30 × 10−16 for Pathology. 
b, Nine examples comparing the segmentation results by BiomedParse and the 
ground truth, using just the text prompt at the top. c, Box plot comparing the 
Dice score between our method and competing methods on a cell segmentation 
test set with n = 42 images. BiomedParse requires only a single user operation 
(the text prompt ‘Glandular structure in colon pathology’). By contrast, to 
get competitive results, MedSAM and SAM require 430 operations (one 
bounding box per an individual cell). Significance levels at which BiomedParse 

outperforms MedSAM, with one-sided paired t-test are **P < 1 × 10−2; ***P < 1 × 
10−3; and ****P < 1 × 10−4. Exact P values are: P < 1.74 × 10−13 for one per dataset and 
P < 1.71 × 10−7 for one per image. d, Five examples contrasting the segmentation 
results by BiomedParse and MedSAM, along with text prompts used by 
BiomedParse and bounding boxes used by MedSAM. e, Comparison between 
BiomedParse and MedSAM on a benign tumor image (top) and a malignant tumor 
image (bottom). The improvement of BiomedParse over MedSAM is even more 
pronounced on abnormal cells with irregular shapes. f, Box plot comparing the 
two-sided K–S test P values between valid text prompt and invalid text prompt. 
BiomedParse learns to reject invalid text prompts describing object types not 
present in the image (small P value). We evaluated a total of 4,887 invalid prompts 
and 22,355 valid prompts. g, Plot showing the precision and recall of our method 
on detecting invalid text prompts across different K–S test P value cutoff.  
h,i, Scatter-plots comparing the area under the receiver operating characteristic 
curve (AUROC) (h) and F1 (i) between BiomedParse and Grounding DINO on 
detecting invalid descriptions. In all box plots, each box shows the quartiles of 
the distribution, with center as the median, minimum as the first quartile, and 
maximum as the third quartile. The whiskers extend to the farthest data point 
that lies within 2 × interquartile range (IQR) from the nearest quartile. Data points 
that lie outside the whiskers are shown as fliers.
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aggregated to ensure spatial cohesion among adjacent pixels (Meth-
ods). This enables BiomedParse to accurately conduct object recogni-
tion, as evidenced in Fig. 4a, where objects are accurately identified 
and segmented with an average Dice score of 0.94.

Grounding DINO19 is a state-of-the-art general-domain object 
recognition system but it does not perform segmentation, which 
makes Grounding DINO and BiomedParse not directly comparable. 
We circumvent this by casting the object recognition task as a binary 
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classification problem: given an input image and a candidate object 
type, the model determines whether the image contains at least one 
object of the given type. In this classification formulation, we observed 
that BiomedParse substantially outperformed Grounding DINO with 
a 25.0%, 87.9%, 74.5% improvement on precision, recall and F1, respec-
tively (Fig. 4b–d). The improvement over Grounding DINO is even larger 
when more objects are present in the image (Fig. 4e).

Next, we evaluated the performance of BiomedParse on end-to-end 
object recognition using weighted average Dice score. Compared to 
MedSAM and SAM using Grounding DINO for recognition and bound-
ing box generation, BiomedParse outperformed them by a large margin 
(Fig. 4f and Supplementary Fig. 10). Similar to our observation on 
object identification, the improvement over comparison approaches is 
even larger when more objects are present in the image (Fig. 4g). These 
results indicate BiomedParse’s ability to identify all objects in an image, 
offering an effective tool for holistic image analysis.

Finally, we evaluated BiomedParse on real-world data from the 
Providence Health System (Fig. 5). We performed object recognition 
by asking BiomedParse to identify and segment all relevant cells in the 
pathology slides. We found that the annotations by BiomedParse cor-
rectly identified regions of immune cells and cancer cells, attaining high 
consistency with the pathologist annotations. While pathologists tend 
to focus on a specific region of the cell type and provide coarse-grained 
annotations, BiomedParse can precisely label all relevant cells as speci-
fied in the ontology, indicating the potential for BiomedParse to help 
alleviate clinician burdens in real-world clinical applications.

Discussion
We have presented BiomedParse, a biomedical foundation model 
for image analysis based on image parsing, and a large-scale image 
parsing dataset BiomedParseData, containing 3.4 million image–
mask–label triples and 6.8 million image–mask–description triples. 
In contrast to existing biomedical foundational models that require 
users to provide a tight bounding box for each object to segment, 
BiomedParse is bounding-box-free and can perform holistic image 
analysis with segmentation, detection and recognition all at once. 
We conducted a large-scale evaluation on 102,855 test image–mask–
label triples across nine modalities. BiomedParse attained new 
state-of-the-art results, substantially outperforming previous best 
methods such as MedSAM and SAM, even when they were equipped 
with an oracle bounding box as the input. The improvement is even 
larger when the objects have irregular shapes or when an image con-
tains a large number of objects. We also validated the accuracy and 
scalability of BiomedParse on previously unseen real-world data from 
the Providence Health System. While BiomedParse has a compara-
ble performance to the state-of-the-art specialized model nnU-Net 
on most imaging modalities (Supplementary Fig. 6), BiomedParse 
achieves such promising performance by only using one universal 
model as opposed to 106 individually trained nnU-Nets models. 
Collectively, BiomedParse offers an accurate, scalable and robust 
biomedical image analysis tool that can be broadly applied to various 

modalities and applications, paving the way for image-based bio-
medical discovery.

The image analysis field has witnessed rapid development in the 
past decade. Since its inception in 2015, the U-Net architecture has 
revolutionized the field of automatic pixel-wise prediction through 
supervised training31,32. This groundbreaking work laid the founda-
tion for a diverse array of network structures, ranging from advanced 
convolution-network designs to vision-transformer models27,28,33–47. 
Recent advances in image detection and recognition, such as develop-
ments in object detection frameworks like Faster R-CNN48 and YOLOv4 
(ref. 49), have enhanced capabilities in identifying and localizing ana-
tomical features with high precision. The introduction of SAM marked 
a milestone by demonstrating the model’s ability to generalize segmen-
tation to previously unseen classes, utilizing visual prompts such as 
points and bounding boxes as guides10.

Despite the proliferation of advances in the general domain, 
research on adapting them for large-scale biomedical image analysis 
across a wide range of organ or tissue classes remains relatively sparse50. 
MedSAM is a notable exception by adapting SAM to the medical realm 
through continued training on a large number of biomedical segmenta-
tion datasets, establishing the state of art in biomedical image analysis; 
however, like SAM, MedSAM focuses on segmentation alone, thus 
ignoring valuable semantic information from related tasks of detec-
tion and recognition. Consequently, both SAM and MedSAM require 
users to provide labor-intensive input such as the tight bounding box 
for each object to segment, which is hard to scale and very challen
ging for objects with irregular shapes11. As a result, recent works have 
exploited other types of user operations to replace bounding box51 or 
segmentation without bounding boxes52,53 as alternatives to bounding 
box-based approaches.

We propose BiomedParse to overcome these challenges due to 
the bounding boxes. By joint learning across segmentation, detection 
and recognition in the unifying framework of image parsing, and by 
using GPT-4 to harmonize noisy object descriptions, BiomedParse was 
able to acquire new capabilities such as identifying and segmenting 
objects of interest using a text prompt alone, as well as recognizing 
all objects in an image by leveraging the segmentation ontology. This 
represents an important step toward scaling holistic image analysis 
in biomedicine and real-world clinical applications. If the user has a 
specific target object type in mind, BiomedParse can perform object 
detection and segmentation based on the text prompt alone, which 
specifies the desired object type (Fig. 2b). Alternatively, BiomedParse 
can be used to identify all available object types without requiring any 
user text prompt. Behind the scenes, BiomedParse enumerates all 
possible object types to perform object detection and segmentation 
simultaneously.

A particularly exciting area for biomedical image analysis is the 
application in cellular images such as hematoxylin and eosin staining and 
multiplexed immunofluorescence (MxIF) imaging. This could help eluci-
date the size, shape, texture and spatial relationships of individual cells, 
with potential ramifications in emerging applications such as modeling 

Fig. 3 | Evaluation on detecting irregular-shaped objects. a, Attention maps of 
text prompts for irregular-shaped objects, suggesting that BiomedParse learns 
rather faithful representation of their typical shapes. US, ultrasound.  
b–d, Scatter-plots comparing the improvement in Dice score for BiomedParse 
over MedSAM with shape regularity in terms of convex ratio (b), box ratio  
(c) and inversed rotational inertia (d). A smaller number in the x axis means  
higher irregularity on average. Each dot represents an object type. We show  
the regression plot with the 95% confidence interval as the error bands. The 
P values show the two-sided Wald test results. e, Six examples contrasting 
BiomedParse and MedSAM on detecting irregular-shaped objects. Plots are 
ordered from the least irregular one (left) to the most irregular one (right).  
f,g Comparison between BiomedParseData and the benchmark dataset used by 
MedSAM in terms of convex ratio (f) and box ratio (g). BiomedParseData is a more 

faithful representation of real-world challenges in terms of irregular-shaped 
objects. h, Box plots comparing BiomedParse and competing approaches on 
BiomedParseData and the benchmark dataset used by MedSAM. BiomedParse 
has a larger improvement on BiomedParseData, which contains more diverse 
images and more irregular-shaped objects. The number of object types are 
as follows: n = 50 for MedSAM benchmark and n = 112 for BiomedParseData. 
Significance levels at which BiomedParse outperforms the competing 
method, with a two-sided paired t-test are **P < 1 × 10−2 and ****P < 1 × 10−4. Exact 
P values were P < 2.98 × 10−3 for MedSAM benchmark and P < 1.86 × 10−12 for 
BiomedParseData. Each box shows the quartiles of the distribution, with center 
as the median, minimum as the first quartile, and maximum as the third quartile. 
The whiskers extend to the farthest data point that lies within 2 × IQR from the 
nearest quartile. Data points that lie outside the whiskers are shown as fliers.
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Fig. 4 | Evaluation on object recognition. a, Six examples showing the results of 
object recognition by our method. Object recognition identifies and segments 
all objects in an image without requiring any user-provided input prompt. 
b–d, Scatter-plots comparing the F1 (b), Precision (c) and Recall (d) scores 
between BiomedParse and Grounding DINO on identifying objects presented 
in the image. e, Comparison between BiomedParse and Grounding DINO on 
object identification in terms of median F1 score across different numbers of 
objects in the image. We show the line plot with the 95% confidence interval 
as the error bands. f, Box plot comparing BiomedParse and MedSAM/SAM 
(using bounding boxes generated by Grounding DINO) on end-to-end object 
recognition (including segmentation) in relation to various modalities. Each 
box shows the quartiles of the distribution, with center as the median, minimum 
as the first quartile, and maximum as the third quartile. The whiskers extend to 
the farthest data point that lies within 2 × IQR from the nearest quartile. Data 

points that lie outside the whiskers are shown as fliers. Each modality category 
contains image instances with different sets of objects. Each object set was 
aggregated as the instance median to be shown in the plot. The number of object 
sets in each modality were as follows: n = 66 for CT, n = 25 for MRI, n = 4 for 
X-ray, n = 20 for Pathology, n = 2 for US and n = 1 for Fundus. Significance levels 
at which BiomedParse outperforms the competing method, with a two-sided 
paired t-test are **P < 1 × 10−2; ***P < 1 × 10−3; and ****P < 1 × 10−4. Exact P values for 
the comparison between BiomedParse and MedSAM were P < 1.96 × 10−57 for 
CT, P < 4.16 × 10−22 for MRI, P < 3.43 × 10−6 for X-ray, P < 9.42 × 10−20 for Pathology 
P < 2.19 × 10−2 for US. g, Comparison between BiomedParse and MedSAM/SAM 
(using bounding boxes generated by Grounding DINO) on end-to-end object 
recognition (including segmentation) in relation to numbers of distinct objects 
in the image. We show the line plot with the 95% confidence interval as the  
error bands.
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tumor microenvironments for precision immunotherapy54–56. The stand-
ard approaches focus on instance segmentation by assigning unique 
identifiers to individual cells to facilitate downstream analysis57–59. 
Hover-net represents a notable advancement in addressing the limita-
tions of semantic breadth and cell categorization within segmentation 
tasks, by incorporating cell classification into the segmentation pro-
cess60; however, traditional methods typically rely on bounding box 
detection and struggle with diverse cell morphologies and irregular 
shapes. Recent efforts aim to overcome these challenges by adopting 
more refined representations and accommodating the multi-resolution 
nature of biological imaging61–63. CellViT is a marquee example that lever-
ages SAM’s encoder backbone to improve hierarchical representation, 
particularly for nucleus segmentation26. BiomedParse can contribute to 
this long line of exciting research work by enabling cell segmentation and 
identification in one fell swoop and enhancing generalizability through 
joint training on a diverse range of image modalities and cell types.

While BiomedParse has demonstrated promising potential for uni-
fying biomedical image analysis, growth areas abound. First, although 
BiomedParse has demonstrated high accuracy (for example, Dice 
scores) in identifying relevant pixels in an image for a given object 
type, by default it does not differentiate individual object instances 
and requires post-processing to separate the instance masks, which 

is important in some applications such as cell counting. Second, while 
BiomedParse can already perform image analysis from text prompt 
alone, it currently does not support interactive dialog with users in a 
conversational style like GPT-4. To address this, we plan to develop a 
conversational system that can better tailor to complex user needs. 
Finally, BiomedParse currently treats non-two-dimensional (2D) modal-
ities such as CT and magnetic resonance imaging (MRI) by reducing 
them to 2D slices, thus failing to utilize the spatial and temporal infor-
mation in the original modalities. In future work, we need to extend 
BiomedParse beyond 2D image slices to facilitate three-dimensional 
(3D) segmentation, detection and recognition.
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Methods
Details of BiomedParseData
We created a large-scale biomedical image parsing dataset called 
BiomedParseData, where each image is associated with a collection 
of objects. Each object is annotated with the segmentation mask and a 
canonical semantic label specifying the object type from a biomedical 
object ontology. Additionally, each semantic label comes with a set 
of synonymous textual descriptions for model training. BiomedPar-
seData was created by synthesizing 45 publicly available biomedical 
segmentation datasets across nine imaging modalities, comprising  
1.1 million images, 3.4 million image–mask–label triples and 6.8 million 
image–mask–description triples (Fig. 1b and Supplementary Table 1). 
To ensure the quality of BiomedParseData, we imposed stringent inclu-
sion criteria: each image had to be manually or semi-manually seg-
mented at the pixel level and a name was available for each segmented 
object from the dataset description. For 3D imaging modalities such 
as CT and MRI, we pre-processed each volume into in-plane 2D slices 
to be consistent with other modalities.

For model training and evaluation, we randomly split each original 
dataset into 80% training and 20% testing. Slices from each 3D volume 
always appear in the same split to prevent information leakage.

To harmonize natural language variations in noisy object descrip-
tions, we use GPT-4 to assist the creation of a three-layer biomedi-
cal object ontology (Fig. 1a). The base layer comprises three broad 
semantic categories: organ, abnormality and histology. The next 
layer comprises 15 meta-object types (for example, heart in organ 
and tumor in abnormality). The most fine-grained layer comprises 
82 object types, such as left heart ventricle and enhancing tumor. 
Specifically, we first used GPT-4 to generate a preliminary hierarchi-
cal structure for biomedical image analysis and propose candidate 
names for individual object types, drawing from a wide range of 
tasks and textual descriptions across the source datasets. We then 
manually reviewed these candidates and mapped them to standard-
ized Observational Health Data Sciences and Informatics (OHDSI) 
vocabularies using Athena64. Most of these candidates are mapped 
to 15 meta-object types by searching in the OHDSI vocabulary. For 
some of them that cannot be mapped to the meta-object types or 
the meta-object types do not exist in the OHDSI vocabulary, we asked 
GPT-4 to suggest the appropriate meta-object type names and do 
the mapping. We introduce ‘other’ as a catch-all category. For future 
expansion, we expect that the first two layers are relatively stable, 
while our framework can easily incorporate new object types in the 
fine-grained layers.

To enhance the robustness of BiomedParse in handling diverse 
text prompts, we also used GPT-4 to generate synonymous textual 
descriptions for each semantic label, following other recent efforts in 
using GPT-4 for synthetic data generation65–67. Specifically, we adopted 
a templatic normalization for each dataset by formulating the unify-
ing image analysis task as identifying ‘[OBJECT TYPE] in [ANATOMIC 
SITE] [MODALITY]’, such as ‘enhancing tumor in brain MRI’ (Extended 
Data Fig. 1). We then introduced linguistic diversity into these descrip-
tions by using GPT-4 to generate variations in professional language 
(Supplementary Fig. 1), as well as introducing synonymous variations 
for each component (Supplementary Fig. 2). We manually checked all 
the templates that we used to prompt GPT-4 for variations to avoid 
incorrectness and hallucinations. We define incorrectness and hal-
lucination as (1) not mentioning the target object; (2) only describing 
the image; (3) referring to another target; and (4) describing another 
image modality. We found that the descriptions provided by GPT-4 are 
generally correct and only less than 10% templates were removed from 
the initial prompts. For training, the number of prompts depends on the 
object type, with a minimum prompts of 1, an average prompts of 8.28, 
a median prompts of 7 and a maximum prompt of 36. We randomly sam-
pled one prompt for training. For inference, we only used one prompt 
for each data point and used the original description as the prompt. 

We compared the performance between varying the text prompt at the 
inference stage and using a fixed one based on the original description 
and did not observe a statistically different performance (Supplemen-
tary Fig. 11). In each training epoch, we randomly sampled a descrip-
tion for each image–mask pair, enabling BiomedParse to understand 
diverse text prompts.

Details of BiomedParse
Existing image analysis methods often focus on segmentation alone. 
They typically expect spatial input prompts such as bounding box or 
scribble for the object to segment and focus on learning spatial embed-
ding such as bounding box coordinates10,11,51.

In contrast, BiomedParse follows SEEM20 and focuses on learning 
text prompts. Specifically, BiomedParse adopts a modular design, 
comprising an image encoder, a text encoder, a mask decoder and a 
meta-object classifier (Fig. 1c). We initialized the model from SEEM, 
with each module described in detail below.

The input to BiomedParse is an image and a text prompt, which 
are passed along to the image and text encoders, respectively. The 
text prompt specifies the object type for segmentation and detec-
tion in the image. The image encoder processes the high-resolution 
image and outputs downsampled embeddings. We provide a flexible 
choice of backbone architectures with Focal21 and SAM-ViT10. The 
text encoder processes the user-provided prompt and generates 
language embeddings. We provide options to use the pretrained 
biomedical language model PubMedBERT22 or training a transformer 
from scratch. The base version of BiomedParse adopts Focal as an 
image encoder and the text encoder transformer fully trained on 
BiomedParseData.

The mask decoder outputs a segmentation mask that has the same 
size as the original image, with a probability between 0 and 1 for each 
pixel, indicating how likely the pixel belongs to the designated object 
in the text prompt. The meta-object classifier includes input from the 
image and text prompt and output object semantics. We follow SEEM20 
and X-Decoder68 to build the segmentation decoder head. The decoder 
is a transformer that cross-attend the image and text embeddings and 
gradually upsample the image features back to high-resolution pixels. 
At the last layer, the attention dot product on the pixel embeddings 
delivers the segmentation mask.

Details of model training
The training of BiomedParse is around segmentation with grounding 
text. Therefore, during training time the following linear combination 
of losses is minimized:

ℒ = aℒc_CE_text + bℒm_BCE_text + cℒm_Dice_text, (1)

where c stands for meta-concept classification with cross-entropy loss 
(CE), m stands for mask prediction with binary cross-entropy and Dice 
loss. The formula for the losses are as follows:

ℒc_CE_text = −
C
∑
c=1

yc log( ̂yc), (2)

ℒm_BCE_text = − 1𝒫𝒫 ∑
p∈𝒫𝒫

(mp log(m̂p) + (1 −mp) log(1 − m̂p)) , (3)

ℒm_Dice_text = 1 −
2∑p∈𝒫𝒫mpm̂p

∑p∈𝒫𝒫mp +∑p∈𝒫𝒫m̂p
, (4)

where y is the one-hot vector of true meta-concept over c = 1, ⋯, C and 
̂y  is the predicted meta-concept probability distribution. mp is the 

ground-truth binary mask for pixel p ∈ 𝒫𝒫 and m̂p is the predicted pixel 
probability. We follow SEEM20 and append the visual sampler loss and 
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other auxiliary losses during training to enable interactive spatial 
refinement, which we refer to the original paper for details. For 
BiomedParse training, we assign equal weights for the three losses.

We initialized BiomedParse from the pretrained SEEM model. 
As a result, we follow the exact hyperparameter setting in the SEEM 
paper to perform continue training for text prompt-based segmenta-
tion. Specifically, we fix learning rate of 10−5 and train for 20 epochs. 
To train BiomedParse, we used 16 NVIDIA A100-SXM4-40GB GPUs 
for a duration of 58 h. We performed inference evaluation with four 
NVIDIA RTX A6000 GPUs. The inference time with a single NVIDIA 
RTX A6000 GPU is 0.17 s per data point. The minimum hardware 
needed for performing the inference is one V100 GPU with 16 GB 
memory. The post-processing time in the object recognition task are 
0.11 s and 0.07 s on average for target selection and mask aggregation 
stages, respectively.

Mixed dataset training. To enable flexible incorporation of multiple 
datasets, we perform random mixing at a batch level. We denote each 
dataset of a modality as 𝒟𝒟m for m = 1, ⋯, M. The creation of each batch 
follows the procedure below:

•	 In each iteration i, we aggregate a batch from K mini-batches 
bi
1,⋯ ,bi

K. For each mini-batch bi
k, we randomly select dataset 

𝒟𝒟m for m = 1, ⋯, M with probability pm and sample the 
mini-batch without replacement.

•	 Concatenate all mini-batches Bi = [bi
1,⋯ ,bi

K].
•	 Perform training step with batch Bi.

We can flexibly control the training data distribution from all the 
datasets with the sampling probability pm. As the size difference of the 
datasets can be large, we define a parametric probability distribution

pm = |𝒟𝒟m|λ

∑M
m′=1 |𝒟𝒟m′ |λ

, 0 ≤ λ ≤ 1. (5)

When λ = 1, we sample the mini-batch with probability propor-
tional to the size of the datasets, thus each example from any dataset 
has equal chance to be selected. The downside is that the training will 
be overwhelmed with the huge datasets, while ignoring the smaller 
ones which are also important.

On the other extreme, when λ = 0, each dataset has equal chance to 
be selected in each iteration. This ensures a good diversity of tasks, but 
the small datasets which have very few examples will be repeated for a 
large amount of time, causing overfitting to the training examples. On 
the other hand, the large datasets will never be exhausted in a limited 
number of epochs.

As a balance between the two extremes, we set λ = 1/2 for the first 
five epochs, then set λ = 1 for the next ten epochs and λ = 1/2 again for 
the last five epochs.

Implementation of competing methods
We compared BiomedParse to the state-of-the-art segmentation 
models, SAM10 and MedSAM11. We recognize the importance of pre-
cise bounding boxes as the model input, so we evaluated competing 
methods in two settings: (1) employing gold-standard bounding boxes, 
and (2) utilizing bounding boxes predicted by the state-of-the-art 
object detection model Grounding DINO19 to provide bounding box 
prompts. For the first setting, we followed previous work11 by deriv-
ing bounding boxes from gold-standard masks, ensuring each box 
tightly encompassed the mask with a uniform margin of 10 pixels. In 
the second setting, we adhered to the inference pipeline of Grounding 
DINO where, when presented with multiple bounding box predic-
tions, we selected the one with the highest confidence score. This 
text-to-box-to-segmentation scheme follows the idea of previous 
work69. In addition to comparing current SAM-based state-of-the-art 
models, we also evaluated BiomedParse against (1) the established 

medical segmentation approach nnU-Net28, an end-to-end U-Net 
architecture that adapts to various medical imaging modalities using 
a purely convolutional module and fully supervised learning with-
out prompts, and (2) the general domain segmentation architecture  
DeeplabV3+, which uses ResNet-101 as the architecture backbone with 
an Atrous Spatial Pyramid Pooling module for decoding and upsam-
pling bottleneck features with multiple fields of view70. To maintain 
uniformity across comparisons, all input images were resized to  
1,024 × 1,024 pixels. We use the same test split of BiomedParseData for 
evaluation across competing methods, and performance was quanti-
fied using the median Dice score on each task. We recognize that the 
train–test splits are different across the original evaluations of the 
competing methods, and the BiomedParseData test split could contain 
examples that were used to train other models. We note that the imple-
mentations for MedSAM, SAM and Grounding DINO were used as is for 
inference purposes without any fine-tuning. As for the task-specific 
nnU-Net models28 and the DeepLabV3+ models70, we trained both 
network architectures in 2D with one binary segmentation model for 
each target in each modality, resulting in 95 task-specific models for 
each method. We adopted the built-in automatic hyperparameter con-
figuration in nnU-Net. For the Deeplabv3 network, we trained all models 
in 50 epochs with batch size of four and a learning rate of 0.0003 with 
weight decay of 0.0001 using AdamW optimizer.

For continued training MedSAM and SAM experiments, we pro-
vided the entire training dataset that was used to train BiomedParse. 
MedSAM and SAM are provided with oracle bounding boxes during 
training and inference. We fixed the SAM and MedSAM backbone 
respectively and further trained for ten epochs each, resulting in 
SAM-FT and MedSAM-FT, respectively. When evaluating UniverSeg30, 
we provided 16 support images for the model as examples, as shown 
as the optimal number of support images in the original paper. For 
CellViT26, we used the PanNuke15 dataset as the evaluation datasets, 
which contains cell segmentations across tissue types. We compared 
BiomedParse to SegVol24, SAT25 and Swin UNETR27 using CT imaging 
from the Amos22 (ref. 16) dataset as SegVol is specific to CT, and 
SAT is specific to CT, MRI and positron emission tomography. Both 
SegVol and SAT adapted SAM architecture to 3D medical volume and 
leverage text of anatomical regions as input besides visual prompts 
of boxes and points. Swin UNETR, built on Swin transformers, is a 
widely used benchmark for CT segmentation tasks and achieved 
top performance on BraTS challenge71. We used the strongest avail-
able model weights and the same text prompts as specified in the 
respective papers.

Detecting invalid textual description
BiomedParse by design can input any image and text prompt; however, 
a text prompt may be invalid, specifying an object that does not exist in 
the given image66,72. For example, the request to identify and segment 
‘left heart ventricle’ in a dermoscopy image should be rejected by the 
model as invalid. It is critical to detect and reject invalid text prompts 
to pre-empt hallucinations73.

In principle, the mask decoder should output low pixel probabili-
ties for invalid text prompt; however, given the sheer number of pixels, 
some might get a relatively high output probability simply by chance, 
thus leading to erroneous object detection and segmentation results. 
To address this problem, we observe that while individual pixels might 
get noisily high probabilities, collectively their distribution would be 
rather different compared to pixels in valid objects. Consequently, we 
can estimate the distribution of its pixel probabilities from training 
data, and then estimate how likely the pixel probabilities in a test image 
are drawn from the same distribution.

Specifically, after BiomedParse was trained, for each object type, 
we computed the average object pixel probability for each training 
image containing objects of the given type, and fit a beta distribution 
for all these probabilities. At test time, for a given image, we computed 
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the average object pixel probability for the predicted object segments 
of the given object type, and compute the P value using a one-sample 
K–S test74. A smaller P value indicates that the predicted object seg-
ments are unlikely to be correct. To increase the robustness, in addition 
to pixel probability, we also consider the RGB values. In particular, for 
each color channel (R, G and B), we similarly fit a beta distribution from 
the average value for valid objects in training, and compute the cor-
responding P value for the predicted object segments in a test image. 
Overall, we treat these four tests as independent and use their product 
as the summary P value.

In this way, we can obtain a summary P value for any given pair of 
text prompt and image. To identify a summary P value threshold for 
separating valid inputs from invalid ones, we created an invalid data-
set by mixing datasets of different modalities. For example, we take a 
target in a certain modality (for example heart anatomies in MRI), and 
apply the corresponding text prompt to identify this target in another 
modality (for example endoscopy) if this target has never appeared in 
that modality. The text prompts for heart anatomies are now invalid 
in the endoscopy dataset, providing us valid examples (prompts in 
the original modality) and invalid examples (prompts in the alterna-
tive modality). We plot the distribution for both valid text prompts 
(for a given image) and invalid ones (Fig. 2f). For comparison against 
Grounding DINO, we use its confidence score given a text prompt and 
an image for invalid input detection.

Attention map conditioned on the textual description
To visualize the shape of each segmentation object type, for example 
‘hepatic vessel in CT’, we collected the predicted pixel probabilities 
for each object type and aggregated probabilities from all images. 
The pixel-level probability is derived from the top layer attention on 
the pixel. The attention map, reflecting the shape for a target t, is 
obtained in a four-step approach. First, we collected all 
BiomedParse-predicted pixel attention for target t as ρ1, ⋯, ρn ∈  
[0, 1]H×W across n examples in the test set. Second, we initialized shape 
distribution for target t as ℳt

1 = ρ1. Third, for iteration i = 1, ⋯, n − 1, 
we computed 2D cross-correlation between ρi+1 and ℳt

i  and shifted 
ρi+1 to be aligned with ℳt

i  at highest cross-correlation, and updated 
the ensemble distribution Mt

i+1 = Mt
i + ̃ρi+1 , where ̃ρi+1  denotes the 

shifted attention matrix. Finally, the attention map for target t is 
normalized as Mt

n/n. For 3D segmentation targets such as CT and MRI, 
we first aggregated the predictions within one volume without shift-
ing and then aligned the volume-aggregated masks using the  
above method.

Details of experiments on irregular-shaped objects
Medical image segmentation models like MedSAM require a bounding 
box as input. When the shape of the target is ‘irregular’, it is hard for 
the bounding box to precisely define the region of interest. To quantify 
the ‘regularity’ of a target mask M, we define the following three met-
rics: Box Ratio measures the degree to which the target mask is similar 
to its tight bounding box: BoxRatio(M ) = |M|

|Box(M)|
, where Box(M) is the 

tight bounding box around mask M and ∣ ⋅ ∣ denotes the area measured 
in number of pixels. Convex Ratio measures how convex the target 
mask is and is defined as ConvexRatio(M ) = |M|

|ConvexHull(M)|
, where 

ConvexHull(M) is the convex hull of mask M. Convex hull is defined as 
the intersection of all convex sets containing a given subset of a Euclid-
ean space. In other words, it is the smallest convex region that covers 
the shape. Inverse rotational inertia (IRI) measures how spread out the 
area of the target mask is. To begin with, the rotational inertia (RI) of 
M relative to its centroid cM is RI(M) = ∑x∈M ∥ x − cM∥

2
2 , where x is the 

coordinate of each pixel in the mask and cM is the coordinate of the 
centroid. To standardize the metric to be independent of the total mask 
area, we take the inverse of the RI and scale by the value of a 
round-shaped mask with the same area, representing the lowest 

rotational inertia achievable by any mask with the same area: 
IRI(M) = |M|2

2π⋅RI(M)
. Under this definition, any mask has 0 < IRI ≤ 1, with any 

round-shaped mask having IRI equal to 1.

Details of experiments on object recognition
We built a hierarchical structure putting all supported targets under 
one modality at one anatomic site. Given any image, for example 
abdominal CT, we traverse all the available targets t = 1, ⋯, m under the 
branch that are exclusive to each other, and prompt the BiomedParse 
model sequentially to get m prediction of mask probabilities ρ1, ⋯, ρm. 
It is possible that the predicted masks can overlap with each other. The 
challenges then are how to select the right set of targets in the specific 
image and how to determine the right mask regions for the selected 
targets to avoid overlapping. We used a two-stage approach for object 
recognition, including a target selection stage and a mask aggregation 
stage. In the target selection stage, we first calculate the original mask 
area for each target t as At. Then, we iterate through the pixels. For each 
pixel (i, j), we rank the targets that have pixel probability ρt

ij > 0.5. The 
target assigned to pixel (i, j) is Tij = argmaxρt′

ij . After this round of pixel 
assigning, the final area for each target t is ̃At = ∑i, j1Tij=t . The targets 
with final area ̃At > λAt  are the selected targets, with λ being the 
user-specified threshold. In the mask aggregation stage, we discard all 
unselected target masks completely and then iterate through the pixels 
again. For each pixel, the most probable target t with ρt

ij > 0.5  is 
assigned. The pixels with predicted probabilities ρt

ij ≤ 0.5  for all  
selected targets are left blank.

For the baseline method using Grounding DINO with SAM and 
MedSAM, we first prompted Grounding DINO with the set of targets to 
retrieve a collection of bounding boxes with confidence scores. Then 
we implemented nonmaximum suppression75–77 to select a subset of 
identified targets in the scene, minimizing the overlapping between 
the targets. To get the segmentation masks for these identified targets, 
we further prompted SAM and MedSAM with the bounding boxes to 
retrieve the corresponding predictions.

Data collection and analysis
All source image data were from publicly available datasets. We used 
Python (v.3.10.12) to curate and preprocess the image data. For the 
textual description for the objects in the images, we used GPT-4 pro-
vided by Azure OpenAI to generate text data. This work used open- 
source code bases and libraries to analyze the data. We used SEEM  
( h t t p s : //g i t h u b. c o m / U X- D e c o d e r / S e g m e n t - E ve r y t h i n g - 
Everywhere-All-At-Once) for the main model architecture and training 
of the model on the datasets. We used matplotlib v.3.8.2 and seaborn 
v.0.11.2 to visualize the data.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
BiomedParseData can be accessed at https://aka.ms/biomedparse- 
release. The three real-world pathology images, including the annota-
tions by pathologists and BiomedParse, can be accessed at https:// 
aka.ms/biomedparse-release.

Code availability
BiomedParse can be accessed at https://aka.ms/biomedparse-release, 
including the model weights and relevant source code. We include 
detailed methods and implementation steps in the Methods to allow 
for independent replication.
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Extended Data Fig. 1 | Number of images in each of the 25 anatomic sites from 9 modalities. One anatomic site could present in multiple modalities.
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BiomedParse BiomedParse-SAM BiomedParse-PubMedBERT

Extended Data Fig. 2 | Ablation studies comparing the performance of 
BiomedParse and two variants. BiomedParse-SAM stands for using SAM to 
initialize the image encoder. BiomedParse-PubmedBERT stands for using the 
frozen PubmedBERT as the text encoder. Each modality category contains 
multiple object types. Each object type was aggregated as the instance median 
to be shown in the plot. N in the plot denotes the number of images in the 
corresponding modality. The numbers of object types in each modality are as 
follows: N = 112 for All, N = 27 for CT, N = 34 for MRI, N = 12 for X-Ray, N = 24 for 
Pathology, N = 7 for Ultrasound, N = 2 for Fundus, N = 3 for Endoscope,  
N = 2 for Dermoscopy, and N = 1 for OCT. Each box shows the quartiles of the 

distribution, with the center as the median, the minimum as the first quartile, 
and the maximum as the third quartile. The whiskers extend to the farthest data 
point that lies within 2 times the inter-quartile range (IQR) from the nearest 
quartile. Data points that lie outside the whiskers are shown as fliers. *indicates 
the significance level at which BiomedParse outperforms BiomedParse-
PubmedBERT, with two-sided paired t-test p-value < 1 × 10-2 for **, p-value <  
1 × 10-3 for ***, p-value < 1 × 10-4 for ****. Exact p-values for the comparison between 
BiomedParse and BiomedParse-PubMedBERT are as follows: p-value <  
9.52 × 10-10 for All, p-value < 1.67 × 10-3 for CT, p-value < 4.87 × 10-4 for MRI, p-value < 
1.98 × 10-4 for Pathology, and p-value < 7.13 × 10-3 for Ultrasound.
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Extended Data Fig. 3 | Evaluating BiomedParse and competing methods 
in terms of Average Symmetric Surface Distance. Box plot comparing the 
performance of BiomedParse and competing methods in terms of Average 
Symmetric Surface Distance (ASSD). Smaller ASSD indicates better segmentation 
performance. Each box shows the quartiles of the distribution, with center as 
the median, minimum as the first quartile, and maximum as the third quartile. 
The whiskers extend to the farthest data point that lies within 2 times the inter-
quartile range (IQR) from the nearest quartile. Data points that lie outside the 
whiskers are shown as fliers. Each modality category contains multiple object 
types. Each object type was aggregated as the instance median to be shown in 

the plot. The numbers of object types in each modality are as follows: n = 112 for 
All, n = 27 for CT, n = 34 for MRI, n = 12 for X-Ray, n = 24 for Pathology, n = 7 for 
Ultrasound, n = 2 for Fundus, n = 3 for Endoscope, n = 2 for Dermoscopy, and n = 
1 for OCT. *indicates the significance level at which BiomedParse outperforms 
the best-competing method, with two-sided paired t-test p-value < 1 × 10-2 for **, 
p-value < 1 × 10-3 for ***, p-value < 1 × 10-4 for ****. Exact p-values for the comparison 
between BiomedParse and MedSAM with oracle box prompt are as follows: 
p-value < 3.43 × 10-6 for All, p-value < 2.61 × 10-3 for CT, p-value < 7.73 × 10-5 for MRI, 
and p-value < 2.94 × 10-8 for Pathology.
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Extended Data Fig. 4 | Comparing BiomedParse with biomedical-specific 
text prompt segmentation models. Bar plot comparing BiomedParse with 
biomedical-specific text prompt segmentation models across different organs 
on CT in terms of Dice score. Each bar shows the mean of the distribution, with 
error bar indicating the 95% confidence interval. The sample sizes for the target 
organs are as follows: n = 27,779 for All, n = 4,409 for Aorta, n = 864 for Bladder,  
n = 1,677 for Duodenum, n = 1,964 for Esophagus, n = 712 for Gallbladder, n = 4,105 
for Inferior vena cava, n = 635 for Left adrenal gland, n = 1,776 for Left kidney, 
n = 4,648 for Liver, n = 1,345 for Pancreas, n = 571 for Right adrenal gland, n = 
1,649 for Right kidney, n = 1,587 for Spleen, and n = 1,837 for Stomach. *indicates 
the significance level at which BiomedParse outperforms the best-competing 

method, with two-sided paired t-test p-value < 1 × 10-2 for **, p-value < 1 × 10-3 
for ***, p-value < 1 × 10-4 for ****. Exact p-values for the comparison between 
BiomedParse and SegVol are as follows: p-value < 2.23 × 10-308 for All, p-value <  
1.86 × 10-58 for Aorta, p-value < 1.73 × 10-7 for Bladder, p-value < 3.44 × 10-86 
for Duodenum, p-value < 5.00 × 10-185 for Esophagus, p-value < 3.37 × 10-15 for 
Gallbladder, p-value < 6.28 × 10-99 for Inferior vena cava, p-value < 5.08 × 10-10 for 
Left adrenal gland, p-value < 9.26 × 10-31 for Left kidney, p-value < 3.31 × 10-37 for 
Liver, p-value < 2.27 × 10-56 for Pancreas, p-value < 1.01 × 10-16 for Right adrenal 
gland, p-value < 2.98 × 10-20 for Right kidney, p-value < 1.09 × 10-20 for Spleen, and 
p-value < 4.68 × 10-25 for Stomach.
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Extended Data Fig. 5 | Comparing BiomedParse with fine-tuned SAM and 
MedSAM. Bar plot comparing BiomedParse and SAM and MedSAM when SAM 
and MedSAM are both further trained on the entire BiomedParseData. Both SAM 
and MedSAM were provided with oracle bounding box around the segmentation 
target during the training and the inference stage. Each bar shows the mean of the 
distribution, with error bar indicating the 95% confidence interval. Each modality 
category contains multiple object types. Each object type was aggregated as the 
instance median to be shown in the plot. We show the numbers of object types in 
each modality are as follows. The numbers of object types in each modality are 

as follows: n = 105 for All, n = 26 for CT, n = 34 for MRI, n = 6 for X-Ray, n = 24 for 
Pathology, n = 7 for Ultrasound, n = 2 for Fundus, n = 3 for Endoscope, n = 2  
for Dermoscopy, and n = 1 for OCT. *indicates the significance level at which 
BiomedParse outperforms the best-competing method, with two-sided paired 
t-test p-value < 1 × 10-2 for **, p-value < 1 × 10-3 for ***, p-value < 1 × 10-4 for ****. Exact 
p-values for the comparison between BiomedParse and SAM-FT with oracle box 
prompt are as follows: p-value < 1.78 × 10-7 for All, p-value < 2.02 × 10-2 for CT, 
p-value < 1.32 × 10-2 for X-Ray, p-value < 3.52 × 10-8 for Pathology, and p-value <  
1.49 × 10-2 for Ultrasound.
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BiomedParse MedSAM (oracle box)
DeepLabV3+ (oracle box)SAM (oracle box)
nnU-Net (oracle box)

Extended Data Fig. 6 | Comparison between BiomedParse and competing 
methods on the MedSAM benchmark. We evaluated MedSAM and SAM 
using the ground truth bounding box for the segmentation.For nnU-Net and 
DeepLabV3+, we reported the evaluation reported by MedSAM. Results are 
shown by imaging modality, with statistical significance comparison between 
BiomedParse and best-competing method MedSAM. Each box shows the 
quartiles of the distribution, with center as the median, minimum as the first 
quartile, and maximum as the third quartile. The whiskers extend to the farthest 
data point that lies within 2 times the inter-quartile range (IQR) from the 
nearest quartile. Data points that lie outside the whiskers are shown as fliers. 

Each modality category contains multiple object types. Each object type was 
aggregated as the instance median to be shown in the plot. The numbers of object 
types in each modality are as follows: n = 50 for All, n = 18 for CT, n = 15 for MRI,  
n = 6 for X-Ray, n = 1 for Pathology, n = 6 for Ultrasound, n = 2 for Fundus, n = 1 for 
Endoscope, and n = 1 for Dermoscopy. * indicates the significance level at which 
BiomedParse outperforms the best-competing method, with two-sided paired 
t-test p-value < 1 × 10-2 for **, p-value < 1 × 10-3 for ***, p-value < 1 × 10-4 for ****. Exact 
p-values for the comparison between BiomedParse and MedSAM with oracle box 
prompt are as follows: p-value < 2.98 × 10-3 for All, p-value < 7.08 × 10-3 for CT, and 
p-value < 4.35 × 10-2 for MRI.
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Extended Data Fig. 7 | Comparing the improvement of BiomedParse over 
SAM with shape irregularity. Scatter plots comparing the improvement of 
BiomedParse over SAM with shape irregularity in terms of box ratio (left), convex 
ratio (middle), and inversed rotational inertia (right). Each dot represents the 

mean statistics over one object type in our segmentation ontology. We show the 
regression plot with the 95 confidence interval as the error bands. The p-values 
show the two-sided Wald test results.
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